FORMULAÇÃO E SOLUÇÃO DA EQUAÇÃO DE TRANSFERÊNCIA RADIATIVA BIDIMENSIONAL COM UMA BASE NATURAL

Rogerio Chaffin Nunes

TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA NUCLEAR.

Aprovada por:

Prof. Nilson Costa Roberty, D. Sc.

Prof. Antônio Carlos Marques Alvim, Ph. D.

Prof. Antônio José da Silva Neto, Ph. D.

Prof. Hélcio Rangel Barreto Orlande, Ph. D.

Prof. Marcelo José Colaço, D. Sc.

RIO DE JANEIRO, RJ - BRASIL ABRIL DE 2006

NUNES, ROGERIO CHAFFIN

Formulação e Solução da Equação de Transferência Radiativa Bidimensional com uma Base Natural [Rio de Janeiro] 2006

XI, 109 p. 29,7 cm (COPPE/UFRJ,

D.Sc., Engenharia Nuclear, 2006)

Tese - Universidade Federal do Rio de Janeiro, COPPE

1. Método de Aproximações Sucessivas;

2. Método de Ordenadas Discretas;

- 3. Equação de Transferência Radiativa;
- 4. Projeções no Eixo Axial
 - I. COPPE/UFRJ II. Título (série)

Aos meus pais, Sr. José e D. Ilka

AGRADECIMENTOS

Ao professor Nilson Costa Roberty pela ótima orientação, pela paciência, pelo incentivo e também pela confiança na minha capacidade.

Aos professores, funcionários e amigos do Programa de Engenharia Nuclear por sua ajuda e compreensão.

A minha família que soube sempre me apoiar.

Aos meus amigos pelo incentivo em todas as horas.

A Jorgeanne que considero como o meu amuleto da sorte.

Ao Instituto de Engenharia Nuclear - IEN/CNEN.

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Doutor em Ciências (D. Sc.).

FORMULAÇÃO E SOLUÇÃO DA EQUAÇÃO DE TRANSFERÊNCIA RADIATIVA BIDIMENSIONAL COM UMA BASE NATURAL

Rogerio Chaffin Nunes

Abril/2006

Orientador: Nilson Costa Roberty

Programa: Engenharia Nuclear

Neste trabalho a equação de transferência radiativa bidimensional é resolvida numericamente considerando-se projeções no eixo axial, a aproximação axial, para os casos com meios isotrópico e anisotrópico. Resolver esse problema necessita-se de uma formulação matemática que aproxime angularmente a equação de transferência radiativa por um método de ordenadas discretas, o resultado dessa operação é um sistema de equações diferenciais parciais de 1ª ordem com condições de contorno prescritas no fluxo incidente que é aproximado por uma malha de pixels, que são obtidos com a utilização de uma base natural e a sua solução numérica se dá através de um processo iterativo denominado método de aproximações sucessivas. Investiga-se a sensibilidade do fluxo emergente, considerando-se as propriedades de absorção e espalhamento do meio e apresenta-se os resultados numéricos da influência dessas propriedades no mapeamento do fluxo incidente–emergente considerando-se um meio não-homogêneo.

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Doctor of Science (D. Sc.).

THE FORMULATION AND THE SOLUTION OF THE TWO-DIMENSIONAL RADIATIVE TRANSFER EQUATION WITH A NATURAL BASIS

Rogerio Chaffin Nunes

April/2006

Advisor: Nilson Costa Roberty

Departament: Nuclear Engineering

In this work the two-dimensional radiative transfer equation is numerically solved considering axial projections for the cases with an isotropic medium and an anisotropic medium. To resolve this problem it is necessary an angular approach of this equation by a discrete ordinate method, so the system of partial differential equations of 1st order with boundary conditions in the incident flow is approached by a mesh of pixels, that are generated using the natural basis, and this numerical solution is given by an iterative process named as the successive approximations method. The sensibility of the emergent flow considering the properties of absorption and scattering of the medium will be investigated and numerical results involving the influence of those properties in the mapping of the incident - emergent flow for the non-homogeneous medium will be presented.

ÍNDICE

Capítulo 1 - Introdução1
Capítulo 2 - Apresentação do Gerador de Malhas de Pixels para Representar o Fluxo e as
Seções de Choque e Descrição da Geometria do Problema7
Capítulo 3 - Formulação do Problema com a Aproximação Axial12
3.1. A Equação de Transferência Radiativa Estacionária Bidimensional: Equação Linear
de Boltzmann12
3.2. Formulação Matemática do Problema Direto12
3.3. Sistema de Coordenadas Cartesianas e a Aproximação Axial15
3.3.1. Sistema de Coordenadas Cartesianas15
3.3.2. Aproximação Axial17
3.3.2.1. Representação do Domínio com a Aproximação Axial17
3.3.2.2. Mudança de Coordenadas para o Problema com a Aproximação Axial.18
3.4. Formulação Matemática do Problema Direto com a Aproximação Axial21
Capítulo 4 - Seção de Choque de Espalhamento25
Capítulo 5 - Combinação do Método de Ordenadas Discretas e do Método de
Aproximações Sucessivas

5.1. A Formulação Matemática do Problema de Transferência Radiativa com o Método do
Fator Integrante
5.1.1. O Método do Fator Integrante no Problema de Transferência Radiativa com a Aproximação Axial - Montagem do Algoritmo
5.2. A Formulação Matemática do Problema de Transferência Radiativa com o Método de
Ordenadas Discretas
5.2.1. A Formulação Matemática com o Método de Ordenadas Discretas Adaptadas para o caso Bidimensional no Plano (X,Y) para o Problema de Transferência Radiativa com a Aproximação Axial
5.3. A Formulação Matemática do Problema de Transferência Radiativa com o Método de Aproximações Sucessivas
 5.3.1. Considerações Sobre a Discretização da Malha de Pixeis com a Aproximação Axial para a Implementação do Método de Aproximações Sucessivas
Capítulo 6 - Resultados48
6.1. Representação de Malhas de Pixels Geradas com a Utilização da Base Natural
6.2. Solução do Problema Direto para o Sistema com Espalhamento Isotrópico

6.2.1. Caso Homogêneo R
6.2.1.1. Caso com $\phi_{in} = 1$ e Posição de Entrada $n_j = 1$ na Fonte $J = 1$
6.2.1.1.1. Resultados para a Projeção Axial $i = 1$
6.2.1.1.2. Resultados para a Projeção Axial $i = 2$
6.2.1.1.3. Resultados para a Projeção Axial $i = 3$
6.2.1.1.4. Resultados para a Projeção Axial $i = 4$
6.2.1.2. Caso com $\phi_{in} = 1$ e Posição de Entrada $n_j = 10$ na Fonte $J = 1$
6.2.1.2.1. Resultados para a Projeção Axial $i = 1$
6.2.1.2.2. Resultados para a Projeção Axial $i = 2$ 61
6.2.1.2.3. Resultados para a Projeção Axial $i = 3$ 63
6.2.1.2.4. Resultados para a Projeção Axial $i = 4$ 64
6.2.1.3. Caso com $\phi_{in} = 10$ e Posição de Entrada $n_j = 10$ na Fonte $J = 1$ 66
6.2.1.3.1. Resultados para a Projeção Axial $i = 1$
6.2.1.3.2. Resultados para a Projeção Axial $i = 2$
6.2.1.3.3. Resultados para a Projeção Axial $i = 3$
6.2.1.3.4. Resultados para a Projeção Axial $i = 4$

6.2.2. Caso com uma Inclusão Raio R_i ($\sigma_s \ll \sigma_a$)
6.2.2.1. Caso com $\phi_{in} = 1$ e Posição de Entrada $n_j = 10$ na Fonte $J = 1$
6.2.2.1.1. Resultados para a Projeção Axial $i = 1$
6.2.2.1.2. Resultados para a Projeção Axial $i = 2$
6.2.2.1.3. Resultados para a Projeção Axial $i = 3$
6.2.2.1.4. Resultados para a Projeção Axial $i = 4$
6.2.2.2. Caso com $\phi_{in} = 1$ e Posição de Entrada $n_j = 10$ na Fonte $J = 1$
6.2.2.2.1. Resultados para a Projeção Axial $i = 1$
6.3. Solução do Problema Direto para o Sistema com Espalhamento
Anisotrópico
6.3.1. Caso com uma Inclusão Raio R_i e com $\phi_{in} = 1$ e Posição de Entrada $n_j = 10$ na Fonte $J = 1$
6.3.1.1. Resultados para a Projeção Axial <i>i</i> = 1
6.3.1.2. Resultados para a Projeção Axial $i = 2$
6.3.1.3. Resultados para a Projeção Axial $i = 3$
6.3.1.4. Resultados para a Projeção Axial <i>i</i> = 191

6.3.2. Caso com uma Inclusão Raio R_i e com $\phi_{in} = 1$ e Posição de Entrada $n_j = 10$ na
Fonte $J = 3$
6.3.2.1. Resultados para a Projeção Axial $i = 1$
6.3.2.2. Resultados para a Projeção Axial $i = 2$
6.3.2.3. Resultados para a Projeção Axial $i = 3$
6.3.2.4. Resultados para a Projeção Axial $i = 4$
6.4. Solução Analítica Aproximada para o Problema de Trasferência Radiativa100
Capítulo 7 - Conclusão e Sugestões de Trabalhos Futuros102
Referências Bibliográficas104

CAPÍTULO 1

INTRODUÇÃO

A relevância desse trabalho se deve à importância em Engenharia da solução do problema de transferência radiativa em meios absorvedores, espalhadores e emissores, ou seja, meios participantes.

Como exemplo de aplicação dessa técnica pode-se citar a interação de partículas não carregadas em meios participantes com a sua utilização em tomografia computadorizada tanto para diagnóstico e tratamento em medicina quanto em ensaios não-destrutivos na indústria. A radiação óptica foi usada pela primeira vez em transiluminação em 1929 por Cutler, que usou luz branca para iluminar mamas e procurou a patologia na luz transmitida.

A formulação matemática para a solução de problemas diretos em transferência radiativa é uma ferramenta eficiente na estimativa de propriedades ópticas em diferentes meios e a sua importância cresce a cada dia nas ciências aplicadas, pricipalmente com o crescimento acelerado das aplicações com laser.

Na modelagem matemática de problemas de transferência radiativa em meios participantes faz-se necessária a utilização da equação linear de Boltzmann ou Equação de transferência radiativa, a qual resulta da aplicação do princípio de conservação da energia num meio.

As soluções analíticas para problemas de transferência radiativa não são disponíveis com excessão de casos relativamente simples, tais como os casos limites de um meio com não-homogeneidades muito pequenas, limite de Rayleigh, ou muito grandes, limite da óptica geomética. Por isso foram desenvolvidos métodos de aproximação ao longo dos anos.

O tratamento matemático dado a essa equação de transferência radiativa, visando a formulação e solução computacional do problema direto, consiste em basicamente em três passos:

Na aproximação angular por ordenadas discretas, na geração da malha de pixels utilizando-se uma base natural e no método de aproximações sucessivas, considerando-se a aproximação axial.

O método de ordenadas discretas vem sendo um dos mais utilizados nos últimos anos, pois é um método relativamente simples para a busca de uma solução da equação de transferência radiativa. Esse método foi inicialmente formulado por CHANDRASEKHAR (1950) e posteriormente desenvolvido por CARLSON (1953) e LATHROP e CARLSON (1966). FIVELAND (1984 e 1988) formulou um acurado método de ordenadas discretas de primeira ordem baseado num método de controle de volumes para duas e três dimensões. BALSARA (2001) formulou um novo esquema de segunda ordem com interpolação multidimensional para resolver sistemas de equações não-lineares. ABU-SHUMAYS (1977) e posteriormente LEWIS e MILLER (1984) utilizaram a combinação de dois tipos de quadraturas angulares num mesmo problema.

As quadraturas angulares para esse método podem ser encontradas em LEWIS e MILLER (1984), FIVELAND(1984 e 1988), TRUELOVE (1988), THURGOOD (1992) e BALSARA (2001).

2

Algumas das razões pela escolha desse método nesse trabalho são: as direções das ordenadas discretas são compatíveis com as direções de propagação da intensidade de radiação, as ordens de aproximação baixas podem resultar na intensidade de radiação suficientemente exata, a discretização espacial é compatível com os requerimentos da solução do método de aproximações sucessivas.

A discretização espacial é obtida pelo gerador de malhas de pixels utilizando-se uma base natural (ROBERTY, 2005). Essa teoria de geração de malhas de pixels utilizando-se a base natural foi introduzida por REIS *et al.* (1989) e aprimorada por REIS (1990) em sua dissertação de mestrado, posteriormente trabalhos desenvolvidos por REIS e ROBERTY (1992), CARITA MONTERO *et al.* (2001) e CARITA MONTERO (2004) aprimoraram essa técnica de geração de malhas de pixels.

ROBERTY (2005) conseguiu um avanço nessa técnica aumentando o refinamento da malha, pois anteriormente ficava-se restrito à geração de malhas pouco refinadas devido a sua relação com a limitação de memória do computador. Além disso houve um ganho de tempo computacional, já que é consideravelmente mais rápido. Esse gerador de malhas pode ser considerado como uma contribuição desse trabalho, pois o seu desenvolvimento ocorreu para superar as limitações do gerador de malhas anterior (CARITA MONTERO, 2004).

O método de aproximações sucessivas estabelecido por VLADIMIROV (1963) consiste em encontrar uma solução aproximada para a equação de transferência radiativa. Sua aplicação abrange problemas envolvendo espalhamento de partículas de diferentes naturezas físicas e que não envolvam fissão. Na literatura pode-se encontrar várias aplicações desse método para soluções de problemas concretos em teoria de transporte e a investigação da convergência das soluções são tratadas em KUZNETSOV (1940, 1945, 1949, 1951a e 1951b), USACHEV (1955), DAVISON (1957) e MARCHUK (1958). Recentemente essa técnica foi utilizada por LIU (2006a 2006b) para resolver problemas de valores de contorno em termodinâmica utilizando-se a equação de Navier-Stokes, onde estuda a convergência e a unicidade da solução numérica. VIEIRA (2005) em sua dissertação de mestrado estudou o teorema do ponto fixo com a sua aplicação para soluções de equações diferenciais lineares. ROBERTY (2005) utiliza essa técnica para a solução numérica da equação linear de Boltzmann.

Por fim, chega-se a um processo iterativo para a solução do problema direto que é implementado computacionalmente utilizando-se um programa escrito em MATLAB 7.0.4, num sistema operacional Microsoft WINDOWS XP e um processador Pentium IV de 3.2 GHz. Vale ressaltar que não será tratado o problema inverso, ficando este caso como uma sugestão de trabalho futuro.

Neste trabalho a equação de transferência radiativa bidimensional, monoenergética, estacionária (DUDERSTADT e MARTIN, 1979, ÖZISIK, 1973) é formulada e resolvida computacionalmente, com o objetivo de investigar a sensibilidade do fluxo de radiação emergente, dadas as propriedades de absorção e espalhamento num meio que se caracteriza por ser absorvedor, espalhador e sem fonte interna de radiação.

A contribuição desse trabalho está na abordagem do problema de trasferência radiativa bidimensional considerando na sua formulação a adoção de um conjunto de projeções no eixo axial (NUNES e ROBERTY, 2005), o que será chamado de

aproximação axial. A relevância dessa abordagem está na possibilidade de obtenção das informações de um problema de transferência radiativa bidimensional através da sua visualização em várias perspectivas diferentes, as projeções axiais, o que pode dar a impressão de um problema tridimensional e possibilitando um enfoque melhor ao estudo do comportamento do espalhamento no problema. O interesse desse trabalho está numa futura utilização desses resultados no contexto de reconstrução de parâmetros pela metodologia fonte-detetor (REIS e ROBERTY, 1992).

O domínio do problema em estudo pode ser descrito geometricamente como um círculo, que possui em seu interior uma ou mais pequenas regiões de formato circular com propriedades diferentes, chamadas de inclusões, o que constitui um sistema não-homogêneo. Definem-se como totalmente transparentes as superfícies desses círculos, de forma que não ocorram reflexões nessas regiões. A condição de contorno é dada no fluxo incidente.

No Capítulo 2 é feita a descrição da geometria do problema, levando-se em consideração a inclusão que é inserida no meio em estudo. É também gerada a malha de pixels utilizando-se uma base natural (ROBERTY, 2005) para as representações do fluxo e das seções de choque.

No Capítulo 3 é feita a formulação do problema, onde é introduzida a equação de transferência radiativa (DUDERSTADT e MARTIN, 1979, ÖZISIK, 1973). Faz-se, então, a formulação matemática do problema direto com a aproximação axial (NUNES e ROBERTY, 2005).

No Capítulo 4 formula-se a seção de choque de espalhamento com a sua expansão por polinômios de Legendre (NUNES e ROBERTY, 2005, FAN *et al.*,

5

2002, LEWIS e MILLER, 1984, ÖZISIK, 1973). Serão descritas as condições de isotropia e anisotropia tratadas nesse problema.

No Capítulo 5 é feita a combinação do método de ordenadas discretas (LEWIS e MILLER, 1984, ABU-SHUMAYS, 1977, CHANDRASEKHAR, 1950) com o método de aproximações sucessivas (VIEIRA, 2005, VLADIMIROV, 1963).

No Capítulo 6 são apresentados os resultados e comentários das simulações numéricas.

No Capítulo 7 são feitas as conclusões e as sugestões de trabalhos futuros.

CAPÍTULO 2

APRESENTAÇÃO DO GERADOR DA MALHAS DE PIXELS PARA REPRESENTAR O FLUXO E AS SEÇÕES DE CHOQUE E DESCRIÇÃO DA GEOMETRIA DO PROBLEMA

Será descrito de forma detalhada a geometria do problema em estudo e também se apresentará a forma da malha de pixels que é gerada, utilizando-se uma base natural para particionar o seu domínio.

O gerador automático de malhas de pixels é um código computacional escrito em MATLAB 7.0.4. e foi inicialmente desenvolvido por REIS *et al.* (1989), REIS (1990) e REIS e ROBERTY (1992) e posteriormente aprimorado por CARITA MONTERO (2004).

Nesse trabalho é utilizada uma nova versão desse gerador de malhas, que supera algumas das limitações da versão anterior (CARITA MONTERO, 2004) e permitindo, por exemplo, um maior refinamento da mesma num intervalo de tempo menor. A teoria que envolve os conceitos da geração dessas malhas de pixels com o emprego de uma base natural pode ser encontrada detalhadamente em ROBERTY (2005), portanto, esse texto se limitará a abordar, apenas, alguns dos principais tópicos dessa teoria.

O salto de qualidade desse procedimento foi a percepção de se gerar as malhas através de setores, que são obtidos a cada interseção de duas faixas de feixes paralelos. Esse novo método permite que se explore toda a memória disponível do computador. A malha completa é obtida devido a simetria nessa região que permite-se utilizar uma simples rotação.

Como um exemplo ilustrativo, pode-se ver pela figura (2.1) a representação de um setor de malha que possui 32 fontes de radiação externa e 30 faixas de feixes paralelos.

Figura 2.1 - Setor de Malha Gerada Faixa a Faixa com 2J=32 e 2M=30.

O problema em estudo é descrito geometricamente como uma forma circular totalmente transparente em sua superfície, posssuindo propriedades físicas de absorção e espalhamento em seu interior. A transparência na sua superfície permite a total passagem de radiação para o seu interior e impede a propriedade de reflexão.

Para construir esse domínio circular são escolhidas uma quantidade par de fontes de radiação de feixes paralelos, representados por 2J, que são colocadas externamente contornando todo o círculo de raio *R*, conforme o exemplo mostrado pela figura (2.2). A interpretação e a descrição dos símbolos matemáticos mostrados nessa figura será feita no capítulo 4.

Cada uma dessas fontes J é subdividida num número par de faixas de feixes paralelos de radiação, representados por 2M, que são igualmente espaçados e irradiam o meio circular, atravessando-o. Como consequência dessa definição o valor do raio R é: R = M.

Figura 2.2 - Malha Gerada por uma Fonte Externa j

Para a construção do problema não-homogêneo, que é o objeto de estudo nesse trabalho, será inserido no círculo principal pelo menos uma pequena inclusão, conforme ilustrado pela figura (2.3), possuindo também a mesma caracteristica geométrica de formato circular e as propriedades físicas de absorção e de espalhamento, assim como uma superfície totalmente transparente que possibilite a total entrada de radiação. O raio da inclusão representa apenas uma fração do raio R, e dessa forma é defindo como $R_i = \frac{M}{A}$, onde $A \in \mathbb{R}^*_+$.

Figura 2.3 - Uma Inclusão em R.

Para evidenciar a inclusão deve-se diferenciar os valores das suas propriedades de absorção e de espalhamento em relação ao meio representado pelo círculo maior, de forma que seja facilmente percebida pela radiação que esteja atravessando o sistema.

A figura (2.4) representa um exemplo da malha de pixels com 2J = 24 fontes externas de radiação e 2M = 30 faixas de feixes paralelos num sistema não-homogêneo com apenas uma inclusão inserida.

Figura 2.4 - Exemplo de um Modelo Não-Homogêneo.

As seções de choque de absorção e de espalhamento da inclusão terão os seus valores diferenciados pelos fatores fa e fs respectivamente, em relação a seção de choque de absorção e de espalhamento do meio de raio R.

A localização da inclusão pelo programa desenvolvido em MATLAB 7.0.4 obedece a seguinte comparação:

$$R^2 < R_i^2, \tag{2.1}$$

onde r^2 representa a equação da circunferência.

$$r^{2} = (x - x_{0})^{2} + (y - y_{0})^{2}.$$
(2.2)

Os valores das propriedades radiativas para o meio de raio R, são os seguintes:

$$\sigma_{s\ell} = \left(\frac{1}{4MJ}\right) \times A_{\ell}, \operatorname{com} \ell = 1, 2, \dots, N.$$
(2.3)

$$\sigma_a = \left(\frac{2}{MJ}\right). \tag{2.4}$$

O símbolo σ_{sl} representa a seção de choque de espalhamento, σ_a a seção de choque de absorção e A_l os coeficientes tabelados e encontrados em ÖZISIK (1973) que serão apresentados com mais detalhes no capítulo 4.

Esse valores foram escolhidos por tratar-se de um problema de pequenas perturbações, onde a contribuição da seção de choque de absorção é maior que a da seção de choque de espalhamento e ambos possuírem valores pequenos.

Os valores das propriedades radiativas para o meio de raio R_i , são os seguintes :

$$\sigma_{s\ell} = fs \times \sigma_{s\ell},\tag{2.5}$$

$$\sigma_a = fa \times \sigma_a. \tag{2.6}$$

O comportamento do fluxo de radiação emergente do domínio *R*, considerando a inclusão e as suas propriedades físicas, ou seja, as seções de choque de absorção e de espalhamento, serão estudadas.

CAPÍTULO 3

FORMULAÇÃO DO PROBLEMA COM A APROXIMAÇÃO AXIAL

Neste capítulo será apresentada a formulação matemática do problema direto com a aproximação axial. O ponto de partida será a introdução da equação de transferência radiativa bidimensional, monoenergética e estacionária (DUDERSTADT E MARTIN, 1979, ÖZISIK, 1973), equação linear de Boltzmann. No trabalho em questão será utilizado um conjunto de projeções no eixo axial (NUNES E ROBERTY, 2005 e 2002), aqui definido como aproximação axial.

3.1. A EQUAÇÃO DE TRANSFERÊNCIA RADIATIVA ESTACIONÁRIA BIDIMENSIONAL: EQUAÇÃO LINEAR DE BOLTZMANN

A teoria de transferência radiativa (CHANDRASEKHAR, 1950) tornou-se um tópico extremamente importante na Física e na Engenharia, pois os processos de transportes de partículas aparecem em uma grande variedade de fenômenos físicos.

A formulação matemática da teoria de transferência radiativa monoenergética e de partículas não carregadas, ou de radiação eletromagnética, num meio participante, ou seja, um meio que absorve, emite e espalha, é dada pela equação de transferência radiativa.

A Equação de transferência radiativa, considerando-se as dependências temporal, energética, angular e espacial para meios tridimensionais é mostrada a seguir pela equação (3.1).

$$\frac{1}{V} \frac{\partial \phi(\underline{x}, E, \underline{\Omega}, t)}{\partial t} + \underline{\Omega} \cdot \nabla \phi(\underline{x}, E, \underline{\Omega}, t) + \sigma_t(\underline{x}, E) \phi(\underline{x}, E, \underline{\Omega}, t) =$$

$$= \int_{4\pi} \sigma_s(\underline{x}, E' \to E, \underline{\Omega}' \cdot \underline{\Omega}) \phi(\underline{x}, E', \underline{\Omega}', t) d\Omega' + q(\underline{x}, E, \underline{\Omega}, t), \qquad (3.1)$$

cada termo da equação (3.1) será discriminado a seguir:

 $\phi(\underline{x}, E, \underline{\Omega}, t)$ é o fluxo angular de partículas neutras, ou intensidade de radiação,

$$\sigma_t(\underline{x}, E) = \sigma_a(\underline{x}, E) + \int_{4\pi} \sigma_s(\underline{x}, E, \underline{\Omega}' \cdot \underline{\Omega}) d\underline{\Omega}' \text{ é o coeficiente de extinção total}$$

 $\sigma_a(\underline{x}, E)$ é o coeficiente de absorção,

 $\sigma_s(\underline{x}, E' \to E, \underline{\Omega}' \cdot \underline{\Omega})$ é o coeficiente de espalhamento,

 $q(\underline{x}, E, \underline{\Omega}, t)$ é a fonte de radiação distribuída no interior do meio,

 \underline{x} é a variável espacial,

 $\underline{\Omega}$ é a direção angular de propagação da radiação,

t é a variável temporal,

E é a energia de radiação

V é a magnitude da velocidade de radiação.

Desprezando-se a dependência espectral por ser monoenergético, a energia *E* desaparece para cada função. Considerando-se um problema estacionário, a sua dependência temporal não é considerada, desta forma tem-se a formulação da

equação de transferência radiativa.Uma vez que o meio é bidimensional, a equação de transporte (3.1) pode ser simplificada, resultando em:

$$\underline{\Omega} \cdot \nabla \phi(\underline{x}, \underline{\Omega}) + \sigma_t(\underline{x}) \phi(\underline{x}, \underline{\Omega}) = S(\underline{x}, \underline{\Omega}) \text{ em } \{ V \in \mathbb{R}^2, \underline{\Omega} \in S^2 \},$$
(3.2)

O temo $S(\underline{x}, \underline{\Omega})$ na equação (3.2) é escrito como:

$$S(\underline{x},\underline{\Omega}) = \int_{S^2} \sigma_s(\underline{x},\underline{\Omega}' \cdot \underline{\Omega}) \phi(\underline{x},\underline{\Omega}') d\Omega' + q(\underline{x},\underline{\Omega}).$$
(3.3)

A intensidade de radiação monocromática é $\phi(\underline{x}, \underline{\Omega})$, sem dependência espectral, ou também chamada de fluxo angular de partículas monoenergética no ponto \underline{x} , e na direção de propagação da radiação $\underline{\Omega}$, sendo absolutamente contínua na direção $\underline{\Omega}$ e mensurável na direção perpendicular $\underline{\Omega}^{\perp}$. $S(\underline{x}, \underline{\Omega}, t)$ representa um termo fonte, cuja primeira parcela da equação (3.3) significa a contribuição da radiação que vem da direção $\underline{\Omega}'$ a qual é espalhada na direção $\underline{\Omega}$, e q representa uma fonte de radiação interna do meio.

3.2. FORMULAÇÃO MATEMÁTICA DO PROBLEMA DIRETO

Quando são conhecidas a geometria do meio, assim como suas propriedades materiais, o termo fonte, as condições de contorno e, para o caso com dependência temporal, a condição inicial, tem-se o problema direto. Dessa forma é possível calcular a intensidade da radiação, ou fluxo angular de partículas, em todo o meio e em qualquer instante de tempo.

Embora o problema em estudo seja bidimensional é necessário a priori a definir um problema tridimensional, e posteriormente, quando necessário, as devidas simplificações para a sua adequação serão implementadas.

O problema direto é definido como: sejam $D \subset \mathbb{R}^3$ uma região convexa não reflexiva, que permita a total entrada da radiação, $S^2 = \{(\Omega_1, \Omega_2, \Omega_3) \in \mathbb{R}^3 \mid \Omega_1^2 + \Omega_2^2 + \Omega_3^2 = 1\}$ um conjunto de direções e ∂D a fronteira de D.

O problema de transferência radiativa pode ser estabelecido como,

$$\underline{\Omega} \cdot \nabla \phi(\underline{x}, \underline{\Omega}) + \sigma_t(\underline{x}) \phi(\underline{x}, \underline{\Omega}) = \int_{S^2} \sigma_s(\underline{x}, \underline{\Omega}' \cdot \underline{\Omega}) \phi(\underline{x}, \underline{\Omega}') d\Omega' + q(\underline{x}, \underline{\Omega})$$
(3.4)

$$\phi(\underline{x},\underline{\Omega})|_{\Sigma^{-}} \equiv \phi_{in}(\underline{x},\underline{\Omega}),$$

sendo $\Sigma^- = \{(\underline{x_{\sigma}}, \underline{\Omega}) \in S^2 \times \partial D \mid \underline{\Omega} \cdot n(\underline{x_{\sigma}}) < 0\}$ a representação da região de contorno na qual incide a radiação, $\underline{x_{\sigma}}$ são as coordenadas na superfície da região de contorno, $\underline{n}(\underline{x_{\sigma}})$ é a normal unitária externa a superfície da região de contorno e $\phi_{in}(\underline{x}, \underline{\Omega})$ é o fluxo de radiação que incide em Σ^- .

O instrumental matemático relativo à análise funcional transcendem os objetivos do presente trabalho e serão omitidos, podendo ser encontrados em MOKHATAR-KHARROUBI (1998) e em DAUTRAY e LIONS (1988).

3.3. SISTEMA DE COORDENADAS CARTESIANAS E A APROXIMAÇÃO AXIAL

3.3.1. SISTEMA DE COORDENADAS CARTESIANAS

As coordenadas espaciais e angular no sistema cartesiano tridimensional são

escritas como

$$x = x \hat{e}_1 + y \hat{e}_2 + z \hat{e}_3. \tag{3.5}$$

Porém, como no problema em questão não há a dependência na coordenada z, ela será deprezada, pois o interesse nesse trabalho é a exploração das projeções da coordenada polar η e também a rotação do sistema de coordenadas no plano (x, y), de modo que as coordenadas espaciais são as coordenadas do plano (x, y) representadas pela equação (3.6).

$$\underline{x} = x \,\widehat{e}_1 + y \,\widehat{e}_2. \tag{3.6}$$

As coordenadas angulares podem ser representadas pela equação (3.7).

$$\underline{\Omega} = sen\eta\cos\varphi \,\,\widehat{e}_1 + sen\eta sen\varphi \,\,\widehat{e}_2 + \cos\eta \,\,\widehat{e}_3. \tag{3.7}$$

O ângulo polar η e o ângulo azimutal φ são ilustrados pela figura (3.1) a seguir.

Figura 3.1 - Sistema de Coordenadas Cartesianas 3D

3.3.2. APROXIMAÇÃO AXIAL

O termo $\underline{\Omega} \cdot \nabla \phi(\underline{x}, \underline{\Omega})$ da equação (3.4) será desenvolvido usando-se (3.7), e sabendo que:

 $\nabla \phi(\underline{x}, \underline{\Omega}) = \frac{\partial \phi(\underline{x}, \underline{\Omega})}{\partial x} \,\widehat{e}_1 + \frac{\partial \phi(\underline{x}, \underline{\Omega})}{\partial y} \,\widehat{e}_2 + \frac{\partial \phi(\underline{x}, \underline{\Omega})}{\partial z} \,\widehat{e}_3, \text{ onde o termo na variável } z \,\acute{e}$ desprezado, pois $\frac{\partial \phi(\underline{x}, \underline{\Omega})}{\partial z} = 0.$

Tem-se então,

$$\underline{\Omega} \cdot \nabla \phi(\underline{x}, \underline{\Omega}) = sen\eta(\cos\varphi \ \frac{\partial \phi(\underline{x}, \underline{\Omega})}{\partial x} + sen\varphi \frac{\partial \phi(\underline{x}, \underline{\Omega})}{\partial y})$$
(3.8)

Deve-se deixar bem claro, que para se usar a aproximação axial é necessário levar em consideração (3.7), pois esta apresenta explicitamente a dependência na variável polar, o que permitirá representar as projeções.

3.3.2.1. REPRESENTAÇÃO DO DOMÍNIO COM A APROXIMAÇÃO AXIAL

Como o problema é bidimensional, faz-se necessário estabelecer as devidas simplificações a seguir.

Sendo $D_{xy} \equiv D \cap \mathbb{R}^2$ uma seção transversal representativa do sólido com a aproximação axial e ∂D_{xy} a sua região de contorno.

$$\Sigma^{\pm} = \{ (\underline{x}_{\sigma}, \underline{\Omega}_{xy}) \in S^1 \times \partial D_{xy} \mid \pm \underline{\Omega}_{xy} \bullet n(\underline{x}_{\sigma}) > 0 \},$$
(3.9)

onde Σ^- a representação da região de contorno incidente e Σ^+ da região de contorno emergente, (x_{σ}, y_{σ}) é a localização de um ponto na superfície da região de contorno $\partial D_{xy} \in \Omega_{xy}$ são as direções de incidência de radiação no plano bidimensional.

Assim, para $\underline{\Omega}_{xy}$, tem-se a expressão: $\underline{\Omega}_{xy} = \cos \varphi \ \hat{e}_1 + sen \varphi \ \hat{e}_2$.

A figura (3.2) ilustra essa seção transversal do sólido com a aproximação axial.

Figura 3.2 - Seção Transversal do Sólido com a Aproximação Axial.

3.3.2.2. MUDANÇA DE COORDENADAS PARA O PROBLEMA COM A APROXIMAÇÃO AXIAL

Para melhor explorar a aproximação axial, necessita-se de uma transformação T, no sistema de coordenadas cartesianas, como será feito a seguir. Esta mudança de coordenadas leva em conta as diferentes direções de entrada de radiação, $\underline{\Omega}$, em relação ao sistema de coordenadas antigo.

$$T(\underline{\Omega}, \underline{x}) = (\underline{\Omega}', \underline{\xi}, s), \qquad (3.10)$$

$$\underline{\Omega}' = \underline{\Omega}, \tag{3.11}$$

onde definição dada em (3.11) é escolhida apenas por uma questão de preferência de notação, não confundir com a notação utilizada para definição do espalhamento, que utiliza o produto escalar $\underline{\Omega}'_{,} \cdot \underline{\Omega}_{,}$.

$$\underline{\xi} = \underline{x} - (\underline{\Omega} \cdot \underline{x})\underline{\Omega}, \tag{3.12}$$

$$s = \underline{\Omega} \cdot \underline{x}. \tag{3.13}$$

Como se trabalhará somente com a projeção de $\underline{\Omega}$ no plano (*x*, *y*), pode-se fazer, sem perda da generalidade, a formulação do problema direto com $\underline{\Omega}$ também no plano (*x*, *y*), isto é,

$$\underline{\Omega} = \cos\varphi \ \hat{e}_1 + sen\varphi \ \hat{e}_2. \tag{3.14}$$

Desenvolvendo (3.13) com (3.6) e (3.14) com (3.5) e (3.7), segue que:

$$s = x\cos\varphi + ysen\varphi. \tag{3.15}$$

A figura (3.3) apresenta as novas coordenadas.

Figura 3.3 - Representação das Novas Coordenadas

Pode-se agora escrever as coordenadas (x, y) parametrizadas pela coordenada s,

$$(x - x_0) = (s - s_0)\cos\phi$$
(3.16)

$$(y - y_0) = (s - s_0)sen\phi.$$
 (3.17)

As equações (3.16) e (3.17) podem ser reescritas explicitando-se as coordenadas (x, y).

$$x = x_0 + (s - s_0)\cos\phi$$
 (3.18)

$$y = y_0 + (s - s_0)sen\varphi.$$
 (3.19)

. -

Na forma vetorial, tem-se:

$$\underline{x} = \underline{x}_{0} + (s - s_{0})\underline{\Omega} \tag{3.20}$$

Reescrevendo-se a equação (3.8), levando-se em consideração (3.18) e (3.19), e

também sabendo-se que:

$$\phi(\underline{x},\underline{\Omega}) = \phi(x,y,\eta,\varphi)$$
(3.21)

 $(\underline{x_0},\underline{\Omega}) \in \Sigma^-,$

$$(\underline{\Omega} \cdot \nabla \phi(\underline{x}, \underline{\Omega}))|_{(x_0, y_0, \eta, \varphi)} = sen\eta(\cos\varphi \ \frac{\partial \phi(x, y, \eta, \varphi)}{\partial x} + sen\varphi \frac{\partial \phi(x, y, \eta, \varphi)}{\partial y}).$$
(3.22)

O resultado é mostrado pela equação (3.23).

$$(\underline{\Omega} \cdot \nabla \phi(\underline{x}, \underline{\Omega}))|_{(x_0, y_0, \eta, \varphi)} = sen\eta \; \frac{\partial \phi(x_0 + (s - s_0)\cos\varphi, y_0 + (s - s_0)sen\varphi, \eta, \varphi)}{\partial s}|_{s = s_0}$$
(3.23)

3.4. FORMULAÇÃO MATEMÁTICA DO PROBLEMA DIRETO COM A APROXIMAÇÃO AXIAL

Definindo a seguinte variável μ :

$$\mu = \cos \eta, \tag{3.24}$$

$$(1-\mu^2)^{\frac{1}{2}} = sen\eta. \tag{3.25}$$

Uma consequência imediata dessa mudança de variável é a representação de ϕ , que desta forma passa a ser como:

$$\phi(x, y, \eta, \varphi) \Rightarrow \phi(x, y, \mu, \varphi).$$

Reescreve-se, agora, as equações (3.4), levando-se em conta (3.18), (3.19), (3.23), (3.24) e (3.25), tem-se:

$$(1 - \mu^{2})^{\frac{1}{2}} \frac{\partial \phi(x_{0} + (s - s_{0})\cos\varphi, y_{0} + (s - s_{0})sen\varphi, \mu, \varphi)}{\partial s} + \sigma_{t}(x_{0} + (s - s_{0})\cos\varphi, y_{0} + (s - s_{0})sen\varphi)$$

$$\phi(x_{0} + (s - s_{0})\cos\varphi, y_{0} + (s - s_{0})sen\varphi, \mu, \varphi) - \int_{S^{2}} \sigma_{s}(x_{0} + (s - s_{0})\cos\varphi, y_{0} + (s - s_{0})\cos\varphi, y_{0} + (s - s_{0})sen\varphi, \mu', \varphi')d\mu'd\varphi' =$$

$$= q(x_{0} + (s - s_{0})\cos\varphi, y_{0} + (s - s_{0})sen\varphi, \mu, \varphi). \qquad (3.26)$$

Por questão de simplicidade de notação, adotam-se, aqui, as seguintes notações:

$$\phi(x_0 + (s - s_0)\cos\varphi, y_0 + (s - s_0)sen\varphi, \mu, \varphi) \equiv \phi(x, y, \mu, \varphi) = \phi(\underline{x}, \mu, \varphi), \quad (3.27)$$

$$\sigma_t(x_0 + (s - s_0)\cos\varphi, y_0 + (s - s_0)sen\varphi) \equiv \sigma_t(\underline{x}), \qquad (3.28)$$

$$q(x_0 + (s - s_0)\cos\varphi, y_0 + (s - s_0)sen\varphi, \mu, \varphi) = q(\underline{x}, \mu, \varphi) \equiv q.$$
(3.29)

Substituindo-se (3.27), (3.28) e (3.29) em (3.26), obtém-se (3.30):

$$(1 - \mu^{2})^{\frac{1}{2}} \frac{\partial \phi(\underline{x}, \mu, \varphi)}{\partial s} + \sigma_{t}(\underline{x})\phi(\underline{x}, \mu, \varphi) - \int_{S^{2}} \sigma_{s}(x_{0} + (s - s_{0})\cos\varphi,$$
$$y_{0} + (s - s_{0})sen\varphi, \underline{\Omega}' \cdot \underline{\Omega})\phi(\underline{x}, \mu', \varphi')d\mu'd\varphi' = q.$$
(3.30)

A condição de contorno do problema com a aproximação axial, dada por (3.9), é reescrita a seguir,

$$\phi|_{\Sigma^{-}} \equiv \phi_{in}, \text{ onde } \Sigma^{-} = \{ (\underline{x}_{\sigma}, \underline{\Omega}_{xy}) \in S \times \partial D_{xy} \mid -\underline{\Omega}_{xy} \cdot n(\underline{x}_{\sigma}) > 0 \}.$$
(3.31)

A formulação do problema direto é estabelecida pela equação de transferência radiativa com a aproximação axial (3.30) e pela condição de contorno (3.31).

Note que espacialmente adotam-se, apenas, as coordenadas do plano (x, y), somente quando se trata das coordenadas angulares e isso leva em consideração a direção de propagação de radiação $\underline{\Omega}$ é que utilizam-se coordenadas tridimensionais para dessa forma utilizar η , a responsável pelas projeções no eixo axial, ou seja, a aproximação axial.

As figuras (3.4) e (3.5) ilustram um pouco melhor a aproximação axial proposta no problema. O que se deseja enfatizar é a possibilidade da representação de direções fora do plano (x, y) sem levar em consideração a variável z. O conjunto de projeções da variável polar μ é que caracteriza a aproximação axial. No transcorrer dos próximos capítulos isso se tornará mais evidente.

Antes de resolver o problema direto será necessária a discretização da equação (3.30), o que será feito no capítulo 5.

Representação de uma Aproximação Axial com Duas Projeções

Figura 3.4 - Formas de Representar a Aproximação Axial.

Figura 3.5 - Representação das Projeções Axiais Pares e Ímpares

CAPÍTULO 4

SEÇÃO DE CHOQUE DE ESPALHAMENTO

Neste capítulo será dada atenção especial ao coeficiente de espalhamento, seção de choque de espalhamento, $\sigma_s(\underline{x}, \underline{\Omega}' \cdot \underline{\Omega})$.

Explorando explicitamente o produto $\underline{\Omega}'_{,} \cdot \underline{\Omega}$, o coeficiente de espalhamento será reescrito, a seguir, de forma a separar a sua dependência espacial da angular, expressando a parte angular por polinômios de Legendre. Essa técnica foi utilizada por exemplo em trabalhos desenvolvidos por ÖZISIK (1973), LEWIS *et al.* (1973), LEWIS e MILLER (1984), KOBAYASHI (1985), BARROS (1997), FAN *et al.* (2002), ANLI e YASA (2004) e NUNES e ROBERTY (2005 e 2002) entre vários outros, e é mostrada pela equação (4.1):

$$\sigma_{s}\left(\underline{x},\underline{\Omega}'\cdot\underline{\Omega}\right) = \sum_{k=0}^{\infty} \sigma_{sk}(\underline{x}) P_{k}(\underline{\Omega}'\cdot\underline{\Omega}).$$
(4.1)

Para simplificar a forma escrita, adota-se, a seguinte notação:

$$\sigma_{sk}(\underline{x}) = \sigma_{sk}(x_0 + (s - s_0)\cos\varphi, y_0 + (s - s_0)sen\varphi) \equiv \sigma_{sk}.$$

$$(4.2)$$

Substituindo-se (4.2) em (4.1), obtém-se:

$$\sigma_s\left(\underline{x},\underline{\Omega}'\cdot\underline{\Omega}\right) = \sum_{k=0}^{\infty} \sigma_{sk} P_k(\underline{\Omega}'\cdot\underline{\Omega}).$$
(4.3)

A equação (4.3) será reescrita de modo a explicitar seus coeficientes de normalização, levando-se em consideração os coeficientes A_k que são definidos,
tabelados e encontrados em ÖZISIK (1973).

$$\sigma_{sk} = \overline{\sigma_s} A_k. \tag{4.4}$$

$$\sigma_{s}\left(\underline{x},\underline{\Omega}'\cdot\underline{\Omega}\right) = \overline{\sigma_{s}}\sum_{k=0}^{\infty}A_{k}P_{k}(\underline{\Omega}'\cdot\underline{\Omega}), \qquad (4.5)$$

Pelo teorema da adição, o polinômio de Legendre, $P_{\ell}(\underline{\Omega}' \cdot \underline{\Omega})$, pode ser reescrito da seguinte forma:

$$P_{\ell}(\underline{\Omega}' \cdot \underline{\Omega}) = P_{\ell}(\mu)P_{\ell}(\mu') + 2\sum_{m=1}^{\ell} \frac{\ell(\ell-m)!}{\ell(\ell+m)!} P_{\ell}^{m}(\mu)P_{\ell}^{m}(\mu')\cos[m(\varphi - \varphi')]$$
(4.6)

Substituindo o resultado do teorema da adição (4.6) na equação (4.4), tem-se:

$$\sigma_{s}\left(\underline{x},\underline{\Omega}'\cdot\underline{\Omega}\right) = \overline{\sigma_{s}}\sum_{k=1}^{\infty}A_{k}\{P_{k}(\mu)P_{k}(\mu') + 2\sum_{m=1}^{k}\frac{(k-m)!}{(k+m)!}P_{k}^{m}(\mu)P_{k}^{m}(\mu')\cos[m(\varphi-\varphi')\}].$$
(4.7)

Definindo-se como $\overline{P}_{\ell}^{m}(\mu)$, os polinômios associados de Legendre normalizados:

$$\overline{P}_{\ell}^{m}(\mu) \equiv \left(\frac{(\ell-m)!}{(\ell+m)!}\right)^{\frac{1}{2}} P_{\ell}^{m}(\mu).$$
(4.8)

$$\int_{-1}^{1} P_{\ell}^{m}(\mu_{n}) P_{\ell'}^{m'}(\mu_{n'}) d\mu' = \frac{(\ell+m)!}{(\ell-m)!} \delta_{\ell\ell'} \delta_{mm'}.$$
(4.9)

Reescrevendo-se (4.9), segue que:

$$\int_{-1}^{1} P_{\ell}^{m}(\mu) P_{\ell'}^{m'}(\mu') d\mu' = \left(\frac{(\ell+m)!}{(\ell-m)!}\right)^{\frac{1}{2}} \left(\frac{(\ell'+m')!}{(\ell'-m')!}\right)^{\frac{1}{2}} \delta_{\ell\ell'} \delta_{mm'}.$$
(4.10)

Substituindo-se (4.8) em (4.10), obtém-se (4.11).

$$\int_{-1}^{1} \overline{P}_{\ell}^{m}(\mu) \overline{P}_{\ell'}^{m'}(\mu') d\mu' = \delta_{\ell\ell'} \delta_{mm'}.$$
(4.11)

Usando a definição dos polinômios associados de Legendre normalizados, (4.8), em (4.7), tem-se:

$$\sigma_{s}\left(\underline{x},\underline{\Omega}'\cdot\underline{\Omega}\right) = \overline{\sigma_{s}}\sum_{k=0}^{\infty}\sum_{m=0}^{k}A_{k}\overline{P}_{k}^{m}(\mu)\overline{P}_{k}^{m}(\mu')\cos[m(\varphi-\varphi')].$$
(4.12)

Para o caso do espalhamento isotrópico considera-se apenas o termo de ordem zero da expansão dos polinômios de Legendre.

Dessa forma os coeficientes A_k são dados por:

$$A_0 = 1 e A_1 = A_2 = A_3 = \ldots = A_k = 0.$$

Para o caso do espalhamento anisotrópico consideram-se os demais termos da expansão dos polinômios de Legendre.

Os coeficientes A_k são dados por:

$$A_0 = 1, A_1 = 0, 48, A_2 = 0, 54 \text{ e} A_3 = 0, 14.$$

CAPÍTULO 5

COMBINAÇÃO DO MÉTODO DE ORDENADAS DISCRETAS E DO MÉTODO DE APROXIMAÇÕES SUCESSIVAS

Neste capítulo a equação de transferência radiativa (DUDERSTADT e MARTIN, 1979, ÖZISIK, 1973, HUNT, 1968) bidimensional com a aproximação axial (NUNES e ROBERTY, 2005 e 2002) sofrerá uma preparação na busca do algoritmo computacional para a sua solução numérica.

Serão utilizados em sequência o clássico método do fator integrante (BOYCE e DIPRIMA, 2002) para solução de equações diferenciais. Após essa etapa ela será discretizada pelo método de ordenadas discretas (FAN *et al.*, 2002, BARROS, 1997, SONG e VISKANTA, 1996, FIVELAND, 1988, JAMALUDDIN e SMITH, 1988, TRUELOVE, 1987, FIVELAND, 1987, KOBAYASHI, 1985, LEWIS e MILLER, 1984, LEWIS ET AL., 1973, ÖZISIK, 1973, CHANDRASEKHAR, 1950, CARLSON, 1953) com um duplo sistema de quadraturas (NUNES e ROBERTY, 2005 e 2002, LEWIS e MILLER, 1984, ABU-SHUMAYS, 1977) a fim de se obter a aproximação angular dessa equação.

O sistema de equações diferenciais resultante será resolvido iterativamente pelo método de aproximações sucessivas (LIU, 2006a e 2006b, ROBERTY, 2005, VIEIRA, 2005, VLADIMIROV, 1963) ao longo dos pixels da malha gerada com a utilização de uma base natural (ROBERTY, 2005).

As condições de contorno são dadas no fluxo incidente.

A seguir será formulado o problema de transferência radiativa com o método do

fator integrante.

5.1 A FORMULAÇÃO MATEMÁTICA DO PROBLEMA DE TRANSFERÊNCIA RADIATIVA COM O MÉTODO DO FATOR INTEGRANTE

Dada a seguinte equação diferencial:

$$y'(x) + p(x)y(x) = q(x),$$
 (5.1)

um método clássico para se resolver uma equação da forma (5.1) é multiplicar todos os seus membros por um fator integrante (BOYCE e DIPRIMA, 2002), que é uma função *I*,

$$I = I(x). \tag{5.2}$$

O resultado é a equação (5.3).

$$I(x)y'(x) + I(x)p(x)y(x) = I(x)q(x).$$
(5.3)

O termo da esquerda da nova equação deve ser exatamente a derivada da função I(x)y(x), isto é,

$$\frac{d}{dx}[I(x)y(x)] = I(x)y'(x) + I(x)p(x)y(x).$$
(5.4)

Para que isso ocorra, deve-se exigir que I = I(x) satisfaça:

$$I(x)y'(x) + I'(x)y(x) = I(x)y'(x) + I(x)p(x)y(x).$$
(5.5)

Toma-se:

$$I'(x)y(x) = I(x)p(x)y(x).$$
(5.6)

Admitindo que y = y(x) não seja identicamente nulo, tem-se:

$$I'(x) = I(x)p(x).$$
 (5.7)

Desse modo, deve-se primeiramente resolver a equação (5.7), para se obter uma solução da seguinte forma:

$$I(x) = \exp[\int_{0}^{x} p(s)ds].$$
 (5.8)

Multiplicando-se os membros da equação (5.1) por (5.8), obtém-se:

$$\exp[\int_{0}^{x} p(s)ds]y'(x) + p(x)y(x)\exp[\int_{0}^{x} p(s)ds] = q(x)\exp[\int_{0}^{x} p(s)ds].$$
(5.9)

O membro da esquerda é a derivada da função $y(x) \exp[\int_{0}^{x} p(s)ds]$ em relação à

variável x e dessa forma pode-se escrever a equação (5.9) como:

$$\frac{d}{dx}[y(x)\exp[\int_{0}^{x} p(s)ds]] = q(x)\exp[\int_{0}^{x} p(s)ds].$$
(5.10)

A seguir será utilizado o método do fator integrante no problema em estudo.

5.1.1 O MÉTODO DO FATOR INTEGRANTE NO PROBLEMA DE TRANSFERÊNCIA RADIATIVA COM A APROXIMAÇÃO AXIAL -MONTAGEM DO ALGORITMO

Usou-se esse método devido à simplicidade que foi proporcionada a equação de

transferência radiativa na tentativa de construção de um algoritmo para a sua implementação computacional.

Reescrevendo-se a equação de transferência radiativa bidimensional, estacionária, monoenergética e com a aproximação axial (3.30) com o termo relativo a seção de choque de espalhamento da equação (4.12), tem-se,

$$(1-\mu^{2})^{\frac{1}{2}} \frac{\partial \phi(\underline{x},\mu,\varphi)}{\partial s} + \sigma_{t}(\underline{x})\phi(\underline{x},\mu,\varphi) - -\int_{-1}^{1} \int_{0}^{2\pi} \overline{\sigma_{s}} \sum_{k=0}^{\infty} \sum_{m=0}^{k} A_{k}\overline{P}_{k}^{m}(\mu)\overline{P}_{k}^{m}(\mu') \cos[m(\varphi-\varphi')]\phi(\underline{x},\mu',\varphi')d\varphi'd\mu' = q.$$
(5.11)

Passando-se o termo referente à seção de choque de espalhamento para o lado direito da igualdade na equação (5.11), obtém-se a equação (5.12).

$$(1-\mu^2)^{\frac{1}{2}} \frac{\partial \phi(\underline{x},\mu,\varphi)}{\partial s} + \sigma_t(\underline{x})\phi(\underline{x},\mu,\varphi) =$$

$$= \int_{-1}^{1} \int_{0}^{2\pi} \overline{\sigma_s} \sum_{k=0}^{\infty} \sum_{m=0}^{k} A_k \overline{P}_k^m(\mu) \overline{P}_k^m(\mu') \cos[m(\varphi - \varphi')] \phi(\underline{x}, \mu', \varphi') d\varphi' d\mu'.$$
(5.12)

Como o sistema em estudo não possui fontes internas de radiação, o termo referente à fonte interna q da equação (5.11) foi desprezado na equação (5.12)

Nota-se que a equação (5.12) está escrita numa forma parecida com a da equação (5.1), diferindo-se, apenas, pelo termo $(1 - \mu^2)^{\frac{1}{2}}$, que multiplica a derivada da equação.

Deseja-se organizar a equação (5.12) na forma da equação (5.1). Para isso, divide-se cada parte da equação (5.12), pelo termo $(1 - \mu^2)^{\frac{1}{2}}$. O resultado é visto na

equação (5.13).

Uma observação que deve ser levada em consideração é evitar $\mu = 1$, pois o termo $(1 - \mu^2)^{\frac{1}{2}}$ está localizado no denominador.

$$\frac{\partial \phi(\underline{x},\mu,\varphi)}{\partial s} + \left[\frac{1}{(1-\mu^2)^{\frac{1}{2}}} \right] \sigma_t(\underline{x}) \phi(\underline{x},\mu,\varphi) = \int_{-1}^{1} \int_{0}^{2\pi} \overline{\sigma_s} \sum_{k=0}^{\infty} \sum_{m=0}^{k} A_k$$

$$\overline{P}_{k}^{m}(\mu)\overline{P}_{k}^{m}(\mu')\cos[m(\varphi-\varphi')]\phi(\underline{x},\mu',\varphi')\left[\frac{1}{(1-\mu^{2})^{\frac{1}{2}}}\right]d\varphi'd\mu'.$$
(5.13)

Conforme a equação (5.8), o fator integrante da equação (5.13) será,

$$I(x) = \exp\left[\int_{0}^{s} \left[\frac{\sigma_{t}(x_{0}(\underline{x}, \varphi) + s'\underline{\Omega})}{(1-\mu^{2})^{\frac{1}{2}}}\right] ds'\right].$$
(5.14)

Reescrevendo-se a equação (5.13) multiplicada pelo fator integrante obtido na equação (5.14), conforme a teoria demonstrada e que resultou na equação (5.10), tem-se a seguir a equação (5.15),

$$\frac{\partial}{\partial s} \left[\phi(\underline{x}, \mu, \varphi) \exp\left[\int_{0}^{s} \left[\frac{\sigma_{t}(x_{0}(\underline{x}, \varphi) + s'\underline{\Omega})}{(1 - \mu^{2})^{\frac{1}{2}}} \right] ds' \right] \right] =$$

$$= \exp\left[\int_{0}^{s} \left[\frac{\sigma_{t}(x_{0}(\underline{x}, \varphi) + s'\underline{\Omega})}{(1 - \mu^{2})^{\frac{1}{2}}} \right] ds' \right] \int_{-1}^{2\pi} \overline{\sigma_{s}} \sum_{k=0}^{\infty} A_{k} \overline{F}_{k}(\mu, \mu', \varphi, \varphi') \phi(\underline{x}, \mu', \varphi') d\varphi' d\mu'. \quad (5.15)$$

Foi adotada na equação (5.15) uma simplificação na notação para o termo de espalhamento, onde foi inserido $\overline{F}_k(\mu, \mu', \varphi, \varphi')$.

$$\overline{F}_{k}(\mu,\mu',\varphi,\varphi') = \left[\frac{1}{(1-\mu^{2})^{\frac{1}{2}}}\right] \sum_{m=0}^{k} \overline{P}_{k}^{m}(\mu) \overline{P}_{k}^{m}(\mu') \cos[m(\varphi-\varphi')].$$
(5.16)

Serão definidas algumas simplificações nas notações do problema,

$$\Phi(\underline{x},\mu,\varphi) = \phi(\underline{x},\mu,\varphi) \exp\left[\int_{0}^{s} \left[\frac{\sigma_{t}(x_{0}(\underline{x},\varphi)+s'\underline{\Omega})}{(1-\mu^{2})^{\frac{1}{2}}}\right] ds'\right],$$
(5.17)

$$\Phi(\underline{x},\mu',\varphi') = \phi(\underline{x},\mu',\varphi') \exp\left[\int_{0}^{s} \left[\frac{\sigma_{t}(x_{0}(\underline{x},\varphi')+s'\underline{\Omega}')}{(1-\mu'^{2})^{\frac{1}{2}}}\right] ds'\right],$$
(5.18)

$$F_{k}(\underline{x},\mu,\mu',\varphi,\varphi') = \left\{ \exp\left[\int_{0}^{s} \left[\frac{\sigma_{t}(x_{0}(\underline{x},\varphi)+s'\underline{\Omega})}{(1-\mu^{2})^{\frac{1}{2}}}\right] ds'\right] \right\}$$
$$\left\{ \exp\left[-\int_{0}^{s} \left[\frac{\sigma_{t}(x_{0}(\underline{x},\varphi')+s'\underline{\Omega})}{(1-\mu'^{2})^{\frac{1}{2}}}\right] ds'\right] \right\} \overline{F}_{k}(\mu,\mu',\varphi,\varphi').$$
(5.19)

Substituindo-se as simplificações (5.17), (5.18) e (5.19) na equação (5.15), obtém-se a equação (5.20).

$$\frac{\partial}{\partial s} \Big[\Phi(\underline{x}, \mu, \varphi) \Big] = \int_{-1}^{1} \int_{0}^{2\pi} \overline{\sigma_s} \sum_{k=0}^{\infty} A_k F_k(\underline{x}, \mu, \mu', \varphi, \varphi') \Phi(\underline{x}, \mu', \varphi') d\varphi' d\mu'$$
(5.20)

5.2 A FORMULAÇÃO MATEMÁTICA DO PROBLEMA DE TRANSFERÊNCIA RADIATIVA COM O MÉTODO DE ORDENADAS DISCRETAS

A complexidade das equações que descrevem os processos de transporte de partículas forçam a implementação de métodos numéricos de solução. Tais métodos procuram introduzir aproximações que convertam a forma integrodiferencial da equação de transferência radiativa num sistema de equações algébricas apropriadas para serem resolvidas por métodos computacionais.

O procedimento mais direto é o de aproximações por ordenadas discretas (CHANDRASEKHAR, 1950), no qual a variável dependente na equação de transporte, $\phi(\underline{x}, \underline{\Omega}, t)$, é substituída por um conjunto discreto de valores num conjunto discreto de pontos, $(\underline{x}_k, \underline{\Omega}_m, t_n)$.

As derivadas e as integrais, que aparecem na equação de transporte, são substituídas pela correspondente representação discreta usando-se métodos de integração numérica. Desta forma, chega-se a um conjunto de equações algébricas para a representação discreta da variável dependente.

No método de ordenadas discretas, a variável angular é discretizada em um pequeno número de direções, ou raios, de modo que, a equação de transferência radiativa é escrita para cada uma delas.

As aproximações são feitas pelo método S_N geral (SELÇUK e KAYAKOL, 1996, CARLSON, 1953), a partir da equação de transferência radiativa.

Para ilustrar o método de Ordenadas discretas será proposto, apenas como exemplo, um problema tridimensional, cujo domínio angular $\underline{\Omega} \in S^2 = 4\pi$ (no caso bidimensional $\underline{\Omega} \in S^1 = 2\pi$) é discretizado em *K* direções, ou seja, $\underline{\Omega} \in {\Omega_k}$, com k = 1, 2, ..., K.

Portanto, pode-se aproximar a integral em $\underline{\Omega}$ por uma quadratura numérica, cuja forma genérica pode ser expressa como:

$$\int_{4\pi} A(\underline{\Omega}) \, d\Omega \simeq \sum_{k=1}^{K} w_k \, A(\underline{\Omega}_k).$$
(5.21)

O peso da quadratura w_k está associado à direção $\underline{\Omega}_k$.

A soma de todos os $w_k \operatorname{com} k = 1, 2, ..., K$ é igual a 4π no caso tridimensional e igual a 2π no caso bidimensional.

Desta forma, o termo integral da equação (3.1), com k = 1, 2, ..., K, é aproximado pela seguinte quadratura numérica:

$$\int_{4\pi} \sigma_s(\underline{x}, \underline{\Omega}' \cdot \underline{\Omega}) \phi(\underline{x}, \underline{\Omega}', t) d\Omega' \simeq \sum_{\ell=1}^K w_\ell \sigma_s(\underline{x}, \underline{\Omega}_\ell \cdot \underline{\Omega}_k) \phi(\underline{x}, \underline{\Omega}_\ell, t).$$
(5.22)

Vale ressaltar que a equação (5.22) corresponde a um exemplo ilustrativo da teoria de ordenadas discretas para o caso tridimensional e de acordo com o sistema cartesiano de coordenadas, pode-se decompor as direções de incidência de radiação, $\underline{\Omega}_k$, nas direções sobre os três eixos de coordenadas.

Os cossenos diretores são representados por μ_k , ζ_k , η_k , desta forma:

$$\underline{\Omega}_{k} = \mu_{k} \,\widehat{e}_{1} + \zeta_{k} \,\widehat{e}_{2} + \eta_{k} \,\widehat{e}_{3}, \text{ onde } \mu_{k}^{2} + \zeta_{k}^{2} + \eta_{k}^{2} = 1, \qquad (5.23)$$

Não confundir o cosseno diretor η_k com angulo polar η .

$$\underline{x} = x \,\hat{e}_1 + y \,\hat{e}_2 + z \,\hat{e}_3, \tag{5.24}$$

$$\nabla = \frac{\partial}{\partial x} \, \hat{e}_1 + \frac{\partial}{\partial y} \, \hat{e}_2 + \frac{\partial}{\partial z} \, \hat{e}_3.$$
(5.25)

Assim, a equação (3.1), considerando-se um caso monoenergético, estacionário e

sem fonte interna de radiação, é aproximada pela seguinte expressão:

$$\mu_{k} \frac{\partial \phi(\underline{x}, \underline{\Omega}_{k})}{\partial x} + \zeta_{k} \frac{\partial \phi(\underline{x}, \underline{\Omega}_{k})}{\partial y} + \eta_{k} \frac{\partial \phi(\underline{x}, \underline{\Omega}_{k})}{\partial z} + \sigma_{t}(\underline{x})\phi(\underline{x}, \underline{\Omega}_{k}) =$$

$$= \sum_{\ell=1}^{k} w_{\ell} \sigma_{s\ell}(\underline{x}, \underline{\Omega}_{\ell} \cdot \underline{\Omega}_{k})\phi(\underline{x}, \underline{\Omega}_{\ell}).$$
(5.26)

Cada direção $\underline{\Omega}_k$ é relacionada a um peso w_k , os quais representam áreas sobre uma esfera unitária, e a sua soma total corresponde, portanto à área de uma esfera unitária.

A invariância das ordenadas a 90 graus é desejável assim como a simetria dos pesos na mesma situação, ou seja, no caso em que (μ_k, ζ_k, η_k) representam uma direção no primeiro octante, a condição de simetria exige a existência dos pontos $(-\mu_k, \zeta_k, \eta_k)$ no segundo octante, $(-\mu_k, -\zeta_k, \eta_k)$ no terceiro octante, $(\mu_k, -\zeta_k, \eta_k)$ no quarto octante, $(\mu_k, \zeta_k, -\eta_k)$ no quinto octante, $(-\mu_k, \zeta_k, -\eta_k)$ no sexto octante, assim como $(-\mu_k, -\zeta_k, -\eta_k)$ no sétimo octante e por fim $(\mu_k, -\zeta_k, -\eta_k)$ no oitavo octante.

Portanto, a descrição dos pontos de colocação em um octante permite, de maneira imediata, a identificação dos pontos de colocação em todos os demais octantes.

Têm-se N/2 níveis relativos a cada eixo sobre os quais os pontos são colocados, sendo N o valor representante da ordem da quadratura. Os vértices dos triângulos sobre a superfície da esfera são formados pelas interseções de cada nível com os níveis relativos aos outros eixos, de forma que o número total de vértices por octante é igual a N(N + 2)/8 e dessa maneira a aproximação S_N é definida em cada octante.

A figura (5.1) ilustra uma quadratura com nível de simetria S_6 .

Figura 5.1 - Quadratura com Nível de Simetria S₆

O mais sério problema na utilização do método de ordenadas discretas é o bem conhecido efeito raio (CHAI, *et al.*, 1993, BRIGGS *et al.*, 1975, LATHROP, 1973, LATHROP, 1971). Este fenômeno ocorre porque o método de ordenadas discretas trata a migração do fluxo de radiação, ou de partículas, pelo confinamento deles em caminhos com direções discretas especificadas.

Existem algumas regiões do sistema que não podem ser alcançadas ao longo da trajetória direta feita pelo fluxo de radiação, ou de partículas. As distorções nas aproximações dos fluxos, causadas pelo efeito raio, são consequentemente mais severas e maiores na medida que se aumenta a contribuição do termo referente a seção de choque de espalhamento (CHAI *et al.*, 1993), pois aumenta o número de trajetórias com direções prescritas que estão disponíveis ao fluxo.

O método de ordenadas discretas pode ser considerado como a substituição da

invariância rotacional da equação de Boltzmann por um conjunto de equações de transferência radiativa que são acopladas pelo espalhamento. Este conjunto finito é, na sua maioria, invariante sob as rotações discretas do sistema de coordenadas. Por outro lado, cálculos de transferência radiativa que empregam o método dos harmônicos esféricos não exibem o efeito raio, pois as equações dos harmônicos esféricos são invariantes para rotações arbitrárias no sistema de coordenadas.

Nesse trabalho usa-se uma quadratura no plano, a base natural, que é a quadratura de Gauss-Lobato, ela não apresenta efeito raio quando a direção do raio coincide com uma das direções de discretização, e como no plano as direções estão igualmente distribuídas, este efeito é minimizado sempre. Entretanto, na outra direção de propagação, para fora do plano, integra-se com uma quadratura do tipo de Gauss-Legendre, e deste modo, quando o raio estiver fora do plano, o problema ocorre. Se fosse adotada uma base natural tridimensional esse problema seria resolvido completamente, mas isto ainda não é possível e ficará como uma sugestão para trabalhos futuros.

5.2.1 A FORMULAÇÃO MATEMÁTICA COM O MÉTODO DE ORDENADAS DISCRETAS ADAPTADAS PARA O CASO BIDIMENSIONAL NO PLANO (*X, Y*) PARA O PROBLEMA DE TRANSFERÊNCIA RADIATIVA COM A APROXIMAÇÃO AXIAL

Nota-se em (5.12) uma dependência explícita da diferença entre $\varphi \in \varphi'$ e dos produtos dos polinômios associados de Legendre normalizados \overline{P}_k^m . Assim, a adoção dos dois tipos de quadraturas (NUNES e ROBERTY, 2005 e 2002, LEWIS e MILLER, 1984, ABU-SHUMAYS, 1977), ou seja, para a variável axial, μ , a quadratura de Gauss-Legendre de ordem N (KOBAYASHI, 1985), cuja escolha é adequada, pois minimiza a possibilidade de erros na solução do problema e também pode-se levar em consideração a anisotropia do espalhamento. Nesse trabalho utiliza-se a ordem de quadratura N = 4 por uma mera questão de simplicidade computacional.

Para a variável azimutal φ , adota-se a quadratura de Gauss-Lobato (NUNES E ROBERTY, 2005 e 2002) com pontos de colocação igualmente espaçados e pesos iguais e isto se deve à partição de domínio empregada, ou seja, a base natural. Nesse caso a quadratura coincide com a regra trapezoidal. A motivação dessa escolha foi a observação da simetria de rotação no plano (*x*, *y*).

Essas ordens de quadraturas foram escolhidas meramente de modo a simplificar a implementação computacional. Tem-se a seguir a tabela (5.1) com outras ordens de quadratura de Gauss-Legendre.

<u>+</u> µ n	wn	<u>+</u> μ _n	Wn		
N	=2	N=10			
0.5773502691 <u>N</u> 0.3399810435 0.8611363115 N	1.000000000 =4 0.6521451549 0.3478548451 =6	0.1488743389 0.4333953941 0.6794095682 0.86506336663 0.9739065285 N=	0.2955242247 0.2692667193 0.2190863625 0.1494513492 0.0666713443 12		
0.2386191860 0.6612093864 0.9324695142 N: 0.1834346424 0.5255324099 0.7966664774 0.9602898564	0.4679139346 0.3607615730 0.1713244924 =8 0.3626837834 0.3137066459 0.2223810344 0.1012285363	0.1252334085 0.3678314989 0.5873179542 0.7699026741 0.9041172563 0.9815606342	0.2491470458 0.2334925365 0.2031674267 0.1600783286 0.1069393260 0.0471753364		

Tabela 5.1 - Ordens de Quadraturas de Gauss-Legendre.

Aqui teremos uma quadratura diferente da equação (5.22), conforme será mostrado, a seguir, pela equação (5.27).

Dada a seguinte integral do termo de espalhamento da equação de transferência radiativa:

$$I(\underline{x},\underline{\Omega}) = \int_{S^2=4\pi} \sigma_s(\underline{x},\underline{\Omega}',\underline{\Omega}) \phi(\underline{x},\underline{\Omega}') d\Omega'.$$
(5.27)

Reescrevendo-se essa integral (5.27) a partir da equação (5.20), tem-se:

$$I(\underline{x},\mu,\varphi) = \int_{-1}^{1} \int_{0}^{2\pi} \overline{\sigma_s} \sum_{k=0}^{\infty} A_k F_k(\underline{x},\mu,\mu',\varphi,\varphi') \Phi(\underline{x},\mu',\varphi') d\varphi' d\mu'.$$
(5.28)

Promovendo-se a troca das integrais por suas respectivas quadraturas, conforme previamente mencionado, tem-se a equação (5.29), sendo w_{μ_i} o peso para a quadratura de Gauss-Legendre cuja ordem é N e w_{φ_j} o peso da quadratura de Gauss-Lobato.

$$I(\underline{x},\mu_i,\varphi_j) = \overline{\sigma_s} \sum_{i'=1}^N \sum_{j'=1}^{2J} \sum_{\ell=0}^{NL} w_{\mu_i'} w_{\varphi_j'} A_\ell F_\ell(\underline{x},\mu_i,\mu_{i'},\varphi_j,\varphi_{j'}) \Phi(\underline{x},\mu_{i'},\varphi_{j'}).$$
(5.29)

Substituindo-se as quadraturas (5.29) na equação de transferência radiativa

(5.20), obtém-se,

$$\frac{\partial}{\partial s} \left[\Phi(\underline{x}, \mu_i, \varphi_j) \right] = \overline{\sigma_s} \sum_{i'=1}^N \sum_{j'=1}^{2J} \sum_{\ell=0}^{NL} w_{\mu_i'} w_{\varphi_j'} A_\ell F_\ell(\underline{x}, \mu_i, \mu_{i'}, \varphi_j, \varphi_{j'}) \Phi(\underline{x}, \mu_{i'}, \varphi_{j'}). (5.30)$$

Para simplificar a notação, serão realizadas algumas mudanças nos índices da equação (5.30).

Definindo:

$$s \equiv s_j, \tag{5.31}$$

$$\mu_i \equiv i, \tag{5.32}$$

$$\mu_{i'} \equiv i', \tag{5.33}$$

$$\varphi_j \equiv j , \qquad (5.34)$$

$$\varphi_{j'} \equiv j'. \tag{5.35}$$

Como consequência dessa nova notação dada por (5.33) e (5.35), tem-se também:

$$w_{\mu_{i'}} = w_{i'}, \tag{5.36}$$

e

$$w_{\varphi_j'} \equiv w_{j'}. \tag{5.37}$$

As substituições das simplificações de notação (5.31), (5.32), (5.33), (5.34), (5.35), (5.36) e (5.37) na equação (5.30), resultam na equação de transferência radiativa discretizada pelo método de ordenadas discretas (5.38).

Efetua-se também as modificações apropriadas em relação a notação na equação (3.31), que representa a condição de contorno do problema com a aproximação axial em estudo.

Pode-se, então, estabelecer o problema direto pelas equações (5.38) e (5.39).

$$\frac{\partial}{\partial s_j} \Big[\Phi(\underline{x}, i, j) \Big] = \overline{\sigma_s} \sum_{i'=1}^N \sum_{j'=1}^{2J} \sum_{\ell=0}^{NL} w_{i'} w_{j'} A_\ell F_\ell(\underline{x}, i, i', j, j') \Phi(\underline{x}, i', j').$$
(5.38)

$$\Phi(\underline{x}, i, j)|_{\Sigma^{-}} \equiv \Phi(\underline{x}, i, j)_{in}.$$
(5.39)

Considerando-se a região de entrada de radiação Σ^- , tal que:

$$\Sigma^{-} = \{ (\underline{x}_{\sigma}, \underline{\Omega}_{xy}) \in S \times \partial D_{xy} \mid -\underline{\Omega}_{xy} \cdot n(\underline{x}_{\sigma}) > 0 \}.$$

5.3 A FORMULAÇÃO MATEMÁTICA DO PROBLEMA DE TRANSFERÊNCIA RADIATIVA COM O MÉTODO DE APROXIMAÇÕES SUCESSIVAS

O problema direto postulado pelo sistema de equações diferenciais (5.38) resultante da aproximação por ordenadas discretas com as condições de contorno (5.39) prescritas no fluxo incidente de radiação, será resolvido numericamente pelo processo iterativo, obedecendo o teorema do ponto fixo de Banach, sendo nomeado como método de aproximações sucessivas (LIU, 2006a, LIU, 2006b, ROBERTY, 2005, VIEIRA, 2005, VLADIMIROV, 1963) que atua ao longo de cada pixel da malha gerada com a utilização de uma base natural (ROBERTY, 2005).

5.3.1 CONSIDERAÇÕES SOBRE A DISCRETIZAÇÃO DA MALHA DE PIXELS

COM A APROXIMAÇÃO AXIAL PARA A IMPLEMENTAÇÃO DO MÉTODO DE APROXIMAÇÕES SUCESSIVAS

A discretização do domínio, malha de pixels, utilizada no problema leva em consideração os conceitos de base natural (CARITA MONTERO, 2004, ROBERTY, 2005), conforme mencionado no capítulo 2.

Será feita uma descrição dessa malha, através dos exemplos ilustrados a seguir pelas figuras (5.2) e (5.3).

Será também considerada a aproximação axial.

A figura (5.2) descreve uma malha de pixels retangulares vista no plano (x, y), sendo $K_{n_j,m_j}^{i,j}$ a caracterização do pixel, que é um segmento orientado na direção j, na faixa n_j , e na fatia m_j com a projeção no eixo axial i.

A figura (5.3) representa a vista lateral de um exemplo da malha da figura (5.2) com quatro projeções no eixo axial *i*.

Figura 5.2 - Malha Gerada por uma Fonte Externa j (Visão Plano).

Figura 5.3 - Projeções no Eixo Axial - Equivalência.

Com o objetivo de identificar matematicamente os pixels numa malha discretizada por uma base natural, faz-se necessário a introdução de uma base que represente a sua localização.

Sendo $\chi_{n_j,m_j}^{i,j}(\underline{x})$, a função característica do segmento *j*, n_j na posição m_j e

projeção no eixo axial *i*, ou seja, o pixel $K_{n_j,m_j}^{i,j}$.

$$\chi_{n_j,m_j}^{i,j}(\underline{x}) = \begin{cases} 1 \text{ se } \underline{x} \in K_{n_j,m_j}^{i,j} \\ 0 \text{ caso contrário} \end{cases}.$$
(5.40)

A região de pertinência do pixel é dada a seguir por,

$$\chi_{e}^{i}(x,y) = \chi_{e}^{i}(n_{1},n_{2},...,n_{2J}) = \bigcap_{j=1}^{2J} \chi_{n_{j}}^{i,j}(\underline{x}).$$
(5.41)

Seja $\chi_{n_j}^{i,j}$, a função característica na faixa R_{i,j,n_j} e χ_e^i a função característica do elemento *e* em cada projeção no eixo axial *i*, que assume os seguintes valores:

$$\chi_{e}^{i}(\underline{x}) = \begin{cases} \delta_{e,n_{j},m_{j}}^{i,j} = 1 \text{ se } \chi_{e}^{i}(\underline{x}) \subset \chi_{n_{j},m_{j}}^{i,j}(\underline{x}) \\ \delta_{e,n_{j},m_{j}}^{i,j} = 0, \quad \text{em caso contrário} \end{cases}.$$
(5.42)

A figura (5.4) representa um ponto de pertinência, x, no cruzamento de duas direções $\underline{\Omega}$ e $\underline{\Omega}'_{,}$.

Figura 5.4 - Pertinência do Pixel

5.3.2 O MÉTODO DE APROXIMAÇÕES SUCESSIVAS COM A APROXIMAÇÃO AXIAL

Serão exploradas as simplificações que são consequência da utilização da base natural para particionar o domínio e também da aproximação por ordenadas discretas da equação de transferência radiativa bidimensional com a aproximação axial, e ainda características subcríticas e sem fissão de processos de absorção e espalhamento.

A solução numérica do problema será calculada por um processo iterativo do tipo:

$$\Theta^{iter} = G\Theta^{iter-1}.$$
(5.43)

Esse processo iterativo obedece o teorema do ponto fixo de Banach, onde a solução converge para um ponto fixo de *G*. Sendo *G* um operador linear fechado (VIEIRA, 2005).

A partir da equação (5.38) faz-se a seguinte integração:

$$\int_{s_j} \frac{\partial}{\partial s_j} \Big[\Theta^{iter}(\underline{x}, i, j) \Big] ds_j =$$

$$= \int_{s_j} \overline{\sigma_s} \sum_{i'=1}^{N} \sum_{j'=1}^{2J} \sum_{\ell=0}^{NL} w_{i'} w_{j'} A_{\ell} F_{\ell}(\underline{x}, i, i', j, j') \Theta^{iter-1}(\underline{x}, i', j') ds_{j'}.$$
(5.44)

Para a resolução numérica dessa integração são necessários os conceitos de discretização do domínio previamente abordados. A integral do lado direito da

equação (5.44) resultará num somatório duplo $(\int_{s_j} \rightarrow \sum_{m_j=1}^{2M} \sum_{e \in K_{n_j,m_j}^{i,j}}^{2J} area(e))$, que

representam as somas de todos os elementos, pixels, *e* em todas as faixas m_j . A regra fundamental para que seja desenvolvido esse processo é a de pertinência no pixel, conforme o exemplo dado na figura (5.4).

Sendo a condição de contorno do problema dada na entrada por:

$$\Theta|_{\Sigma^{-}} \equiv \Theta_{in}. \tag{5.45}$$

Considerando-se a definição da equação (5.17) em (5.45), tem-se a condição de contorno (5.46).

$$\Phi_{in} = \phi_{in} \exp\left[\sum_{m_{j'=1}}^{m_j} \sum_{e \in K_{n_j,m_j}^{i,j}} \left[\frac{\sigma_i(e)area(e)}{(1-i^2)^{\frac{1}{2}}} \right]\right].$$
(5.46)

A condição de pertinência do elemento e é exigida na construção do algoritmo computacional iterativo. Dessa forma, a solução da integração na equação (5.44) de acordo com a equação (5.43), é dada por:

$$\Theta^{iter}(n_j, m_j, i, j, n_c, i_c, j_c) = \delta_{i, i_c} \delta_{j, j_c} \delta_{n_j, n_c} + \overline{\sigma_s} \sum_{m_{j'=1}}^{m_j} \sum_{e \in K_{n_j, m_j}^{i, j}} \sum_{i'=1}^N \sum_{j'=1}^{2J} \sum_{\ell=0}^{NL} w_{i'} w_{j'} A_{\ell}$$

$$F_{\ell}(n_{j'}(e), m_{j'}(e), i, i', j, j') area(e) \Theta^{iter-1}(n_{j'}, m_{j'}, i', j', n_c, i_c, j_c).$$
(5.47)

Os termos n_c , i_c , j_c indicam quando a condição de pertinência do pixel é obedecida.

Substituindo-se a definição dada pela equação (5.17) na equação (5.47), obtém-se o algoritmo para a solução numérica do problema direto. Lembrando que a condição de contorno é dada por (5.46).

$$\phi^{iter}(n_j, m_j, i, j, n_c, i_c, j_c) =$$

$$= \Theta^{iter}(n_j, m_j, i, j, n_c, i_c, j_c) \exp - \left[\sum_{\substack{m_j \\ m_{j'=1}}}^{m_j} \sum_{e \in K_{n_j, m_j}^{i,j}} \left[\frac{\sigma_i(e)area(e)}{(1-i^2)^{\frac{1}{2}}} \right] \right]$$
(5.48)

O teste de convergência da solução iterativa é o teste de Cauchy (NUNES e ROBERTY, 2005).

$$erro_{iter} \equiv \|\Theta^{iter} - \Theta^{iter-1}\| < 10^{-4}.$$
(5.49)

CAPÍTULO 6

RESULTADOS

Neste capítulo serão apresentados os resultados numéricos da análise da sensibilidade do fluxo emergente proveniente da solução do problema direto da equação de transferência radiativa bidimensional com a aproximação axial, levando-se em consideração a geometria circular do problema e também as propriedades materiais do meio.

Toda a rotina computacional foi escrita na linguagem MATLAB 7.0.4.

6.1 REPRESENTAÇÃO DE MALHAS DE PIXELS GERADAS COM A UTILIZAÇÃO DA BASE NATURAL

As figuras (6.1) e (6.2), representam dois exemplos de malhas de pixels geradas para a solução do problema direto. A malha da figura (6.1) será utilizada no cálculo da solução numérica do problema direto desse trabalho.

Vale ressaltar que a escolha dessa malha não foi por nenhuma razão técnica, mas apenas uma escolha pessoal.

As tabelas (6.1) e (6.2) indicam as configurações de cada malha e o tempo computacional aproximado de geração de cada uma delas, num processador Pentium IV de 3.2GHz.

As figura (6.1) e (6.2) representam malhas de pixels homogêneas.

Tabela 6.1 - Configuração.

Figura 6.1 - Malha de Pixels (J=6, M=10).

Tabela 6.2 - Configuração.					
J	М	T(seg)			
10	10	11,22			

Figura 6.2 - Malha de Pixels (J=10, M=10).

6.2 SOLUÇÃO DO PROBLEMA DIRETO PARA O SISTEMA COM ESPALHAMENTO ISOTRÓPICO

Serão mostrado os casos do estudo da sensibilidade do fluxo emergente.

Os valores de referência do problema em estudo são apresentados por tabelas em cada caso.

6.2.1 CASO HOMOGÊNEO R

Nessa subseção serão apresentados os resultados de simulações para o caso homogêneo, considerando-se variação na intensidade do fluxo de radiação incidente ϕ_{in} e também a posição de entrada de radiação no meio, n_j . As tabelas (6.3) e (6.4) apresentam os valores de referência, enquanto que a tabela (6.5) apresenta as propriedades de seção de choque. A diferença entre as tabelas (6.3) e (6.4) está no ϕ_{in} , que assume valores 1 e 10 respectivamente.

J	6
М	10
Ν	4 (ordem Gauss-Legendre)
\mathbf{w}_{j}	π/J (peso Gauss-Lobato)
w _i	Para N=4 – Tabela (5.1) (peso Gauss-Legendre)
ϕ_{in}	1
	2
N_L	3 (ordem dos P. Legendre)
N _L	(ordem dos P. Legendre) 1 (Isotrópico)
N_L A_L σ_a	(ordem dos P. Legendre) 1 (Isotrópico) 2/MJ

Tabela 6.3 - Configuração do Problema

J	6
М	10
Ν	4 (ordem Gauss-Legendre)
wj	π/J (peso Gauss-Lobato)
w _i	Para N=4 – Tabela (5.1) (peso Gauss-Legendre)
ф _{іп}	10
φ _{in} N _L	10 3 (ordem dos P. Legendre)
ϕ_{in} N_L A_L	10 3 (ordem dos P. Legendre) 1 (Isotrópico)
ϕ_{in} N_L A_L σ_a	10 3 (ordem dos P. Legendre) 1 (Isotrópico) 2/MJ

Tabela 6.4 - Configuração do Problema

Tabela 6.5 - Propriedades de Seção de Choque

Propriedade	Símbolo	Valor
Raio R (cm)	М	10
Seção de Choque de Absorção (cm ⁻¹)	σ_{a}	0,033
Seção de Choque de Espalhamento (cm ⁻¹)	$\sigma_{\rm sl}$	0,004

6.2.1.1 CASO COM
$$\phi_{in} = 1$$
 E POSIÇÃO DE ENTRADA $n_j = 1$ NA FONTE $J = 1$

Serão mostrados os resultados numéricos da sensibilidade do fluxo de radiação emergente. As tabelas (6.3) e (6.5) representam a configuração das propriedade físicas do meio.

O tempo computacional para a configuração proposta é de aproximadamente 302 segundos.

A figura (6.3) representa a seção de choque total do sistema homogêneo,

considerando-se as suas propriedades de absorção e de espalhamento num sistema com J = 6 e M = 10.

Figura 6.3 - Seção de Choque Total do Sistema Homogêneo.

6.2.1.1.1 RESULTADOS PARA A PROJEÇÃO AXIAL i = 1

As figuras (6.5), (6.7), (6.9) e (6.11) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_i = 1$.

As tabelas (6.6), (6.8), (6.10) e (6.12) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_j = 1$.

As figuras (6.6), (6.8), (6.10) e (6.12) representam para cada uma de suas respectivas projeções *i*, no problema i = 1, 2, 3 e 4, o erro da solução do fluxo de radiação pelo número de iterações.

Figura 6.5 - Fluxo Emergente j =1, Faixa nj =1, i = 1.

	FLUXO EMERGENTE (2J=12 E 2M=20) PARA i=1						
ir		0	0		-	0	7
	0.5004.0	2	3	4	0.005.05	7 505 05	0 705 05
1	0,59619	0,000136	0,000104	9,23E-05	8,39E-05	7,56E-05	6,78E-05
2	0,001005	0,000615	0,000646	0,000351	9,56E-05	0,97E-05	6,69E-05
3	5,76E-05	9,94E-05	7,705,05	7.505.05	0,000624	0,000567	0,000506
4	5,27E-05	7,15E-05	7,73E-05	7,59E-05	6,99E-05	0,95E-05	0,000313
5	6,93E-05	0,34E-05	0,24E-05	6,71E-05	6,04E-05	6,74E-05	6,51E-05
0	3,47E-03	7,00E-05	7,28E-05	0,04E-03	0,19E-03	5,522-05	5,12E-05
2	7,19E-05	5.93E-05	5,80E-05	5,69E-05	5,94E-05	5,92E-05	5,85E-05
0	4,79E.05	1,53E-05	0,71E-05	5.00E-05	6,20E-05	5,00E-05	6,92E 05
10	4,70E-05	4,04E-00	4,03E-05	3,20E-05	3,71E-05	0,00E-05	0,000114
10	2,03E-05	3,19E-05	0.000204	4,042-03	0,000202	0.000318	0,000352
12	0.000551	0.000546	0,000204	0,000203	0,000232	7.64E-05	7 28E-05
12	0,000001	0,000040	0,000021	0,000001	0,000100	7,040 00	7,202 00
	8	9	10	11	12	13	14
1	6.06E-05	5.67E-05	5.59E-05	5.66E-05	5.71E-05	5.64E-05	5.59E-05
2	6.35E-05	6.05E-05	5.69E-05	5.29E-05	4.84E-05	4.35E-05	3.98E-05
3	0.000425	0.000225	7.01E-05	5.89E-05	5.74E-05	5.43E-05	5.02E-05
4	0,000489	0,000481	0,000463	0,000445	0,000429	0,000405	0,000244
5	6,24E-05	6.01E-05	5,70E-05	6.37E-05	0,000201	0,000355	0,000389
6	5.04E-05	5,12E-05	5,19E-05	5.23E-05	5.25E-05	5,27E-05	5,44E-05
7	5,75E-05	5,69E-05	5,56E-05	5,43E-05	5,44E-05	5,73E-05	6,30E-05
8	5,72E-05	6,10E-05	6,47E-05	6,83E-05	7,17E-05	7,49E-05	7,88E-05
9	6,52E-05	6,46E-05	6,22E-05	6,37E-05	0,000125	0,000215	0,000269
10	0,000186	0,000211	0,000235	0,000264	0,000297	0,000327	0,000226
11	0,000343	0,000205	7,16E-05	6,53E-05	6,86E-05	7,02E-05	7,20E-05
12	6,93E-05	6,83E-05	6,70E-05	6,51E-05	6,26E-05	5,96E-05	5,91E-05
	15	16	17	18	19	20	
1	5,42E-05	5,17E-05	4,79E-05	4,31E-05	4,18E-05	4,20E-05	
2	3,91E-05	4,01E-05	4,00E-05	3,72E-05	3,05E-05	1,99E-05	
3	4,57E-05	4,04E-05	3,43E-05	2,70E-05	2,29E-05	2,15E-05	
4	6,71E-05	4,87E-05	4,87E-05	4,62E-05	3,99E-05	2,78E-05	
5	0,000387	0,000386	0,000385	0,00032	6,28E-05	3,98E-05	
6	5,62E-05	9,55E-05	0,000471	0,000827	0,000923	0,001012	
7	6,92E-05	7,57E-05	8,23E-05	9,08E-05	0,000112	0,006674	
8	8,21E-05	0,000121	0,000542	0,001118	0,001534	0,002128	
9	0,000319	0,000383	0,000465	0,000448	7,97E-05	4,44E-05	
10	7,01E-05	5,89E-05	6,56E-05	6,80E-05	6,47E-05	4,89E-05	
11	7,31E-05	7,24E-05	6,89E-05	6,28E-05	6,38E-05	6,92E-05	
12	6,27E-05	6,94E-05	7,49E-05	7,74E-05	7,40E-05	5,63E-05	

Tabela 6.6 - Fluxo Emergente j = 1, nj = 1, i = 1.

Figura 6.6 - Erro de Cauchy para 30 Iterações.

6.2.1.1.2 RESULTADOS PARA A PROJEÇÃO AXIALi=2

Figura 6.7 - Fluxo Emergente da j =1, Faixa nj =1, i = 2.

					1=20/17410	1=2	
	1	0	0	4	F	c	7
	0.75507	2	3	4	C 005 05	7.445.05	0.005.05
1	0,75507	0,000128	9,44E-05	8,72E-05	8,08E-05	7,44E-05	6,83E-05
2	0,000372	0,000347	0,000316	0,000191	7,00E-05	5,70E-05	0,000207
3	2,02E-05	3,7 IE-05	0,000223	0,000266	0,000304	0,00032	0,000337
4	1,43E-05	2,34E-05	3,15E-05	3,57E-05	3,72E-05	4,93E-05	0,000174
5	1,34E-05	1,69E-05	2,22E-05	2,93E-05	3,61E-05	4,32E-05	5, TUE-05
6	1,78E-05	3,10E-05	4,40E-05	4,92E-05	4,83E-05	4,60E-05	4,73E-05
/	5,30E-05	5,30E-05	5,00E-05	0,20E-05	6,57E-05	0,77E-05	6,90E-00
8	5,36E-05	7,84E-05	9,04E-05	8,91E-05	8,22E-05	7,49E-05	7,06E-05
9	8,82E-05	8,36E-05	8,40E-05	9,02E-05	9,19E-05	9,12E-05	8,90E-05
10	5,92E-05	8,98E-05	0,000102	9,72E-05	8,46E-05	9,41E-05	0,000292
11	4,51E-05	0,000103	0,000811	0,0009/5	0,000934	0,000892	0,000854
12	0,002128	0,001899	0,001638	0,000896	0,000167	9,61E-05	9,66E-05
	8	9	10	11	12	13	14
1	6,24E-05	5,92E-05	5,89E-05	6,03E-05	6,15E-05	6,12E-05	6,03E-05
2	5,65E-05	5,66E-05	5,65E-05	5,61E-05	5,56E-05	5,49E-05	5,51E-05
3	0,000328	0,000196	7,75E-05	7,02E-05	7,30E-05	7,51E-05	7,55E-05
4	0,000313	0,000348	0,000394	0,000437	0,000497	0,000537	0,000346
5	5,82E-05	5,99E-05	5,81E-05	6,38E-05	0,000185	0,000351	0,000425
6	5,33E-05	5,79E-05	6,16E-05	6,48E-05	6,76E-05	6,97E-05	6,89E-05
7	6,86E-05	6,65E-05	6,28E-05	5,93E-05	5,73E-05	5,80E-05	6,04E-05
8	7,01E-05	7,04E-05	7,08E-05	7,11E-05	7,16E-05	7,20E-05	7,21E-05
9	8,59E-05	8,09E-05	7,53E-05	8,17E-05	0,00025	0,000449	0,000501
10	0,000451	0,000447	0,000433	0,000423	0,000414	0,000396	0,000236
11	0,000736	0,000372	8,23E-05	6,47E-05	6,55E-05	6,28E-05	5,64E-05
12	9,31E-05	8,70E-05	8,04E-05	7,39E-05	6,71E-05	5,99E-05	5,32E-05
	15	16	17	18	19	20	
1	5,84E-05	5,63E-05	5.38E-05	5,09E-05	5.20E-05	5.38E-05	
2	5,81E-05	6,34E-05	6,83E-05	6,99E-05	6,28E-05	4,43E-05	
3	7,49E-05	7,25E-05	6,75E-05	5,73E-05	5,06E-05	4,94E-05	
4	0,000101	7,78E-05	8,11E-05	7,81E-05	6,29E-05	3,88E-05	
5	0,000471	0,000521	0,000581	0,000503	8,17E-05	4,46E-05	
6	6,56E-05	8,95E-05	0,000372	0,000727	0,000939	0,001183	
7	6,31E-05	6,59E-05	6.88E-05	7,18E-05	8.69E-05	0,007227	
8	7,20E-05	0,000143	0,000873	0,001632	0,00188	0,00212	
9	0.000506	0,00052	0,000525	0,000434	4.86E-05	1,36E-05	
10	4,81E-05	2,71E-05	2,55E-05	2,22E-05	1.65E-05	1,02E-05	
11	4.93E-05	4.25E-05	3.55E-05	2.81E-05	2.31E-05	1.99E-05	
12	5,19E-05	5,43E-05	5.50E-05	5,07E-05	3.89E-05	2,44E-05	

Tabela 6.7 - Fluxo Emergente j =1, nj =1, i = 2.

Figura 6.8 - Erro de Cauchy para 30 Iterações.

6.2.1.1.3 RESULTADOS PARA A PROJEÇÃO AXIAL i = 3

Figura 6.9 - Fluxo Emergente j =1, Faixa nj =1, i = 3.

	FLUXO EMERGENTE (2J=12 E 2M=20) PARA i=3						
	1	2	3	4	5	6	7
1	0,76079	0,000154	0,000105	8,89E-05	7,57E-05	6,46E-05	5,53E-05
2	0,001795	0,001763	0,001668	0,000922	0,000145	5,85E-05	5,36E-05
3	4,44E-05	9,83E-05	0,000702	0,00082	0,00073	0,000665	0,000598
4	2,19E-05	3,63E-05	4,69E-05	5,11E-05	5,27E-05	7,57E-05	0,000248
5	1,29E-05	1,51E-05	1,87E-05	2,36E-05	2,80E-05	3,24E-05	3,69E-05
6	8,55E-06	1,40E-05	1,85E-05	2,10E-05	2,23E-05	2,32E-05	2,51E-05
7	1,89E-05	2,02E-05	2,19E-05	2,49E-05	2,79E-05	3,11E-05	3,47E-05
8	1,45E-05	2,35E-05	3,11E-05	3,42E-05	3,46E-05	3,43E-05	3,54E-05
9	2,07E-05	2,34E-05	2,67E-05	3,04E-05	3,34E-05	3,65E-05	3,97E-05
10	1,84E-05	2,90E-05	3,67E-05	3,97E-05	4,01E-05	0,00012	0,000839
11	3,46E-05	0,000158	0,001607	0,001846	0,001662	0,001514	0,001396
12	0,004555	0,003679	0,002913	0,00141	0,000193	7,83E-05	7,15E-05
	8	9	10	11	12	13	14
1	4,73E-05	4,16E-05	3,86E-05	3,70E-05	3,55E-05	3,34E-05	3,07E-05
2	4,89E-05	4,42E-05	3,99E-05	3,62E-05	3,30E-05	3,00E-05	2,75E-05
3	0,000496	0,000246	5,95E-05	4,63E-05	4,52E-05	4,34E-05	4,02E-05
4	0,000388	0,000381	0,00038	0,000369	0,000368	0,000348	0,000213
5	4,13E-05	4,48E-05	4,82E-05	5,67E-05	0,000137	0,000237	0,000284
6	2,86E-05	3,27E-05	3,73E-05	4,23E-05	4,79E-05	5,40E-05	5,96E-05
7	3,79E-05	4,02E-05	4,15E-05	4,27E-05	4,54E-05	5,12E-05	5,88E-05
8	3,84E-05	4,16E-05	4,52E-05	4,92E-05	5,37E-05	5,85E-05	6,23E-05
9	4,28E-05	4,43E-05	4,54E-05	9,16E-05	0,00074	0,001437	0,001444
10	0,001358	0,001213	0,001067	0,000923	0,000814	0,000685	0,000362
11	0,001121	0,000503	8,06E-05	5,49E-05	5,22E-05	4,92E-05	4,55E-05
12	6,48E-05	5,86E-05	5,28E-05	4,75E-05	4,23E-05	3,75E-05	3,36E-05
	15	16	17	18	19	20	
1	2,75E-05	2,45E-05	2,14E-05	1,80E-05	1,52E-05	1,29E-05	
2	2,64E-05	2,62E-05	2,55E-05	2,30E-05	1,76E-05	1,09E-05	
3	3,69E-05	3,35E-05	3,01E-05	2,58E-05	2,24E-05	2,01E-05	
4	5,70E-05	4,08E-05	4,13E-05	3,97E-05	3,32E-05	2,27E-05	
5	0,000318	0,000358	0,000409	0,00037	6,28E-05	3,14E-05	
6	6,49E-05	8,87E-05	0,000281	0,00052	0,000689	0,000917	
7	6,74E-05	7,72E-05	8,86E-05	0,0001	0,000132	0,003734	
8	6,53E-05	0,000167	0,001045	0,001613	0,00133	0,001081	
9	0,00129	0,001147	0,001025	0,000718	7,08E-05	2,56E-05	
10	6,29E-05	3,53E-05	3,26E-05	2,89E-05	2,23E-05	1,35E-05	
11	4,13E-05	3,68E-05	3,17E-05	2,59E-05	2,21E-05	2,06E-05	
12	3,21E-05	3,20E-05	3,12E-05	2,88E-05	2,32E-05	1,51E-05	

Tabela 6.8 - Fluxo Emergente j = 1, nj = 1, i = 3.

Figura 6.10 - Erro de Cauchy para 30 Iterações.

6.2.1.1.4 RESULTADOS PARA A PROJEÇÃO AXIALi=4

Figura 6.11 - Fluxo Emergente j =1, Faixa nj =1, i = 4.

					=20/1744		
	4	0	0	4	-	0	
	0.50000	2	3	4	C	6	7 005 05
1	0,59996	0,000234	0,0001/1	0,00014	0,000117	9,61E-05	7,83E-05
2	0,002744	0,001/96	0,001142	0,000542	0,000139	8,86E-05	7,48E-05
3	0,92E-05	0,000157	7.055.05	7.475.05	7,000,059	0,000749	0,00064
4	4,54E-05	0,47E-05	7,35E-05	7,47E-05	7,22E-05	0,000107	0,000422
5	3,00E-05	3,23E-05	3,7 TE-05	4,40E-05	4,95E-05	3,42E-05	3,63E-05
0	1,77E-05	2,72E-05	3,330-05	3,01E-05	3,07E-05	3,07E-05	3,04E-05
/	4,14E-05	3,79E-03	3,30E-05	3,772-05	3,90E-00	4,100-05	4,31E-03
0	3,01E-05	4,17E-05	4,03E-05	4,66E-05	4,49E-05	4,26E-05	4,22E-05
9	3,61E-05	3,43E-05	3,38E-05	3,70E-05	4,00E-05	4,27E-05	4,51E-05
10	1,71E-05	2,54E-05	3,06E-05	3,35E-05	3,47E-05	4,07E-05	9,17E-05
11	2,54E-05	5,15E-05	0,00027	0,000307	0,000305	0,000295	0,000291
12	0,001483	0,001113	0,000837	0,000452	0,000138	9,89E-05	8,94E-05
· · · · · · · · · · · · · · · · · · ·	-						
	8	9	10	11	12	13	14
1	6,38E-05	5,50E-05	5,00E-05	4,66E-05	4,34E-05	3,97E-05	3,73E-05
2	6,32E-05	5,51E-05	4,80E-05	4,16E-05	3,58E-05	3,09E-05	2,80E-05
3	0,00051	0,00026	7,30E-05	5,65E-05	5,24E-05	4,79E-05	4,37E-05
4	0,000646	0,000619	5,76E-04	5,42E-04	5,04E-04	4,63E-04	2,62E-04
5	6,19E-05	6,45E-05	6,70E-05	8,87E-05	3,45E-04	5,86E-04	5,93E-04
6	4,25E-05	4,76E-05	5,28E-05	5,83E-05	6,41E-05	7,03E-05	7,78E-05
7	4,46E-05	4,70E-05	4,89E-05	5,10E-05	5,46E-05	6,14E-05	7,30E-05
8	4,49E-05	4,97E-05	5,51E-05	6,11E-05	6,77E-05	7,49E-05	8,51E-05
9	4,79E-05	5,15E-05	5,48E-05	6,12E-05	1,08E-04	1,70E-04	2,07E-04
10	0,000141	0,000158	1,76E-04	1,93E-04	0,000212	2,23E-04	1,65E-04
11	0,000257	0,000162	7,95E-05	7,20E-05	7,01E-05	6,72E-05	6,44E-05
12	8,12E-05	7,52E-05	6,93E-05	6,35E-05	5,76E-05	5,16E-05	4,72E-05
	15	16	17	18	19	20	
1	3,48E-05	3,19E-05	2,86E-05	2,53E-05	2,49E-05	2,53E-05	
2	2,69E-05	2,68E-05	2,62E-05	2,48E-05	2,18E-05	1,53E-05	
3	3,95E-05	3,48E-05	2,93E-05	2,28E-05	1,89E-05	1,77E-05	
4	6,62E-05	4,68E-05	4,68E-05	4,42E-05	3,73E-05	2,57E-05	
5	5,16E-04	4,64E-04	0,000399	0,000307	6,20E-05	4,01E-05	
6	8,69E-05	1,73E-04	0,000864	0,00133	0,001188	0,001024	
7	8,75E-05	1,04E-04	0,000124	0,000151	0,000202	0,004857	
8	9,68E-05	1,25E-04	0,000308	0,000572	0,00084	0,001255	
9	2,41E-04	2,79E-04	0,000322	0,000308	9,30E-05	7,49E-05	
10	7,16E-05	6,20E-05	6,30E-05	6,17E-05	5,53E-05	3,97E-05	
11	6,09E-05	5,63E-05	5,03E-05	4,32E-05	4,03E-05	4,04E-05	
12	4,62E-05	4,75E-05	4,79E-05	4,64E-05	4,10E-05	2,91E-05	
							L

Tabela 6.9 - Fluxo Emergente j =1, nj =1, i = 4.

Figura 6.12 - Erro de Cauchy para 30 Iterações.

6.2.1.2 CASO COM
$$\phi_{in} = 1$$
 E POSIÇÃO DE ENTRADA $n_i = 10$ NA FONTE $J = 1$

Serão mostrados os resultados numéricos da sensibilidade do fluxo de radiação emergente. As tabelas (6.3) e (6.5) representam a configuração das propriedade físicas do meio.

O tempo computacional para a configuração proposta é de aproximadamente 305 segundos.

6.2.1.2.1 RESULTADOS PARA A PROJEÇÃO AXIAL i = 1

As figuras (6.13), (6.15), (6.17) e (6.19) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_j = 10$.

As tabelas (6.10), (6.11), (6.12) e (6.13) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_i = 10$.

As figuras (6.14), (6.16), (6.18) e (6.20) representam para cada uma de suas respectivas projeções *i*, no problema i = 1, 2, 3 e 4, o erro da solução do fluxo de radiação pelo número de iterações.

Figura 6.13 - Fluxo Emergente j =1, Faixa nj =10, i = 1.

	FLUXO EMERGENTE (2J=12 E 2M=20) PARA I=1							
	1	2	3	4	5	6	7	
1	8,13E-05	0.000113	0,000138	0,00015	0,000161	0,000169	0.000175	
2	0,000125	0.000149	0,000157	0,000163	0,000418	0.000682	0.000604	
3	0,000173	0,000704	0,000623	0,000558	0,000517	0,000479	0,000448	
4	0,001163	0,000894	0,000713	0,000634	0,000576	0,000521	0,000465	
5	0,000156	0,000776	0,001235	0,000939	0,000764	0,000644	0,000546	
6	0,000157	0,000176	0,000173	0,000166	0,000159	0,00095	0,001165	
7	0,000127	0,000144	0,000159	0,000165	0,000166	0,000165	0,000163	
8	0,000118	0,000144	0,000155	0,000157	0,000157	0,000333	0,00046	
9	9,86E-05	0,000182	0,00026	0,00026	0,000264	0,000272	0,000282	
10	0,000206	0,00021	0,000208	0,000217	0,00023	0,000241	0,000249	
11	5,83E-05	0,000279	0,000286	0,000288	0,000298	0,000308	0,000318	
12	7,32E-05	8,46E-05	8,71E-05	9,10E-05	0,000281	0,000506	0,000507	
	8	9	10	11	12	13	14	
1	0,000183	0.000206	0,23276	0,000172	0,000155	0,000153	0,000154	
2	0,00055	0.000533	0,000521	0,000512	0,000507	0,000505	0,00053	
3	0,000429	0.000431	0,000433	0,000431	0,000429	0,000428	0,00045	
4	0,000425	0.000413	0,000406	0,000397	0,000392	0,000387	0,00040	
5	0,000472	0.000438	0,000411	0,000385	0,000358	0,000334	0,000334	
6	0,000867	0.000719	0,000617	0,000547	0,000489	0,000454	0,000452	
7	0,000161	0.000163	0,00018	0,006283	0,000185	0,000159	0,000146	
8	0,000469	0,000512	0,000579	0,000668	0,000782	0,000931	0,001192	
9	0,000297	0,000326	0,000361	0,0004	0,000442	0,000492	0,00058	
10	0,000259	0,000284	0,000313	0,000347	0,000385	0,000431	0,0005	
11	0,000334	0,00037	0,000411	0,000452	0,000497	0,000548	0,000642	
12	0,000519	0,000574	0,000649	0,000736	0,000857	0,001029	0,00134	
	15	16	17	18	19	20		
1	0,000155	0,000154	0,000149	0,000139	0,000118	9,82E-05		
2	0,000367	0,000106	0,000102	9,57E-05	8,53E-05	6,57E-05		
3	0,000487	0,000531	0,000587	0,000676	0,000401	7,08E-05		
4	0,000437	0.000473	0,000507	0,000565	0.0007	0.000912		
5	0,000341	0,000349	0,00036	0,000397	0,000438	9,70E-05		
6	0,000477	0,000284	9,86E-05	9,43E-05	8,77E-05	7,37E-05		
7	0,000134	0,000122	0,000109	9,53E-05	7,16E-05	4,72E-05		
8	0,001599	0,000947	0,00015	0,000139	0,000119	8,99E-05		
9	0,0007	0,000856	0,001053	0,001356	0,00172	0,000229		
10	0,000613	0,000737	0,000881	0,001091	0,001506	0,002098		
11	0,000771	0,000933	0,00113	0,001416	0,000892	0,000164		
12	0,001075	0,000181	0,000186	0,000191	0,000193	0,000168		

Tabela 6.10 - Fluxo Emergente j =1, nj =10, i = 1

Figura 6.14 - Erro de Cauchy para 30 Iterações.

6.2.1.2.2 RESULTADOS PARA A PROJEÇÃO AXIALi=2

Figura 6.15 - Fluxo Emergente j =1, Faixa nj =10, i = 2.

	F	LUXU EME	RGENTE (2	2J=12 E 2IV	=20) PARA	1=2	
	1	2	3	4	5	6	
1	9.04E-05	0.000133	0.000175	0.000202	0.000227	0.000252	0.00027
2	0.00011	0.000146	0.000171	0.000188	0.000548	0.000965	0.00092
3	0.000103	0.000644	0.000662	0.000657	0.000657	0.000657	0.0006
4	0.000489	0.000507	0.000523	0.000541	0.000563	0.000584	0.00060
5	6.76E-05	0.000183	0.000354	0.000401	0.00044	0.000484	0.0005
6	9.45E-05	0.000138	0.000177	0.000198	0.00021	0.000381	0.0005
7	0.000165	0.000213	0,000257	0,000277	0,000286	0,000293	0,00029
8	0.000227	0.00029	0.000325	0.000328	0.000322	0.001464	0.00200
9	0.000273	0.000766	0.001277	0.001126	0.001001	0.000919	0.00083
10	0.001282	0.001165	0.00101	0.000919	0.000856	0.000789	0.00072
11	0,000169	0.000973	0,000981	0.000934	0,000903	0,000868	0,00083
12	9,26E-05	0.000135	0,000175	0,000202	0,000575	0,001057	0,00108
	8	9	10	11	12	13	
1	0.000305	0.000352	0,45762	0,000299	0,000269	0,000266	0,00026
2	0.000893	0.000894	0,000902	0.000915	0,000931	0,000954	0,0010
3	0,000675	0.000704	0,000743	0,000773	0,000802	0,000844	0,0009
4	0,000627	0.000658	0,000693	0,00073	0,000771	0,000816	0,0008
5	0.000576	0.000624	0,000674	0.000731	0,000789	0,000857	0,00092
6	0.000663	0.000775	0,000895	0,00103	0,001195	0,001355	0,0015
7	0.000301	0.000301	0,000323	0.010495	0,000293	0,00024	0,00020
8	0,001707	0,001492	0,00134	0,001212	0,001101	0,00103	0,00
9	0.000777	0.000734	0,000703	0.000674	0,000638	0,000616	0.0006
10	0,000675	0,000644	0,000614	0,000591	0,000569	0,000554	0,0005
11	0,000811	0,000812	0,000815	0,000816	0,000818	0,000821	0,0008
12	0,001118	0,001192	0,00126	0,001335	0,001406	0,00146	0,001
	15	16	17	18	19	20	
1	0.000265	0.000263	0,000258	0,000249	0,000225	0,00019	
2	0.000712	0.000262	0,000272	0,000277	0.00026	0,000212	
3	0.000994	0.001073	0,001167	0,001288	0,000742	0.00019	
4	0.000935	0.001009	0,001085	0.001176	0,001281	0,001392	
5	0.001007	0.001099	0,001199	0.001319	0,001265	0,000177	
6	0.001767	0.000904	0,000192	0,000167	0.00013	9,18E-05	
7	0,000179	0,000153	0,00013	0,000107	7,63E-05	4,84E-05	
8	0,000997	0,000538	0,000138	0,000119	9,32E-05	6,43E-05	
9	0.000611	0.000609	0,000615	0,000661	0,000655	0,000139	
10	0,000559	0,000556	0,000551	0,000557	0,000603	0,000635	
11	0,000899	0,000951	0,001007	0,001091	0,0006	0,000106	
12	0,001074	0.000237	0,000227	0,000211	0,000179	0,000133	

Tabela 6.11 - Fluxo Emergente j =1, nj =10, i = 2

Figura 6.16 - Erro de Cauchy para 30 Iterações.

6.2.1.2.3 RESULTADOS PARA A PROJEÇÃO AXIALi=3

Figura 6.17 - Fluxo Emergente j =1, Faixa nj =10, i = 3.

	FLUXO EMERGENTE (2J=12 E 2M=20) PARA i=3							
l								
		1	2	3	4	5	6	7
	1	0,000134	0,0002	0,000262	0,000295	0,000318	0,000339	0,000359
	2	0,000132	0,000173	0,0002	0,000216	0,000594	0,001074	0,001063
	3	0,000109	0,001082	0,001069	0,000991	0,000934	0,000883	0,000843
	4	0,001161	0,000975	0,000861	0,000811	0,000782	0,00075	0,000718
	5	6,87E-05	0,000297	0,000565	0,000534	0,000527	0,000538	0,000548
	6	5,52E-05	8,03E-05	0,000102	0,000117	0,000131	0,000507	0,000747
	7	7,51E-05	0,000104	0,000137	0,000159	0,00018	0,000201	0,000225
	8	0,000107	0,000152	0,000192	0,000214	0,000232	0,00178	0,002536
	9	0,000126	0,00069	0,00145	0,00133	0,001212	0,001104	0,001011
	10	0,001546	0,001422	0,001254	0,001133	0,001041	0,000943	0,000851
	11	0,000324	0,001832	0,001722	0,0015	0,00133	0,001184	0,001067
	12	0,000237	0,000292	0,000315	0,000319	0,001344	0,002263	0,001863
		8	9	10	11	12	13	14
	1	0,000379	0,000417	0,45812	0,000305	0,000255	0,000238	0,00022
	2	0,001053	0,001046	0,00104	0,001034	0,00103	0,001025	0,001018
	3	0,000815	0,000808	0,000806	0,0008	0,000796	0,000792	0,000806
	4	0,000691	0,000698	0,000705	0,000719	0,000732	0,000753	0,000795
	5	0,000562	0,000598	0,000646	0,000696	0,000742	0,000794	0,00089
	6	0,000747	0,000794	0,000862	0,000968	0,001101	0,001311	0,001635
	7	0,000249	0,000271	0,000322	0,011442	0,000395	0,00036	0,000337
	8	0,00207	0,001734	0,001486	0,001286	0,00112	0,000983	0,000875
	9	0,000926	0,000851	0,000782	0,000717	0,000656	0,000599	0,00055
	10	0,00076	0,000696	0,000636	0,000586	0,000539	0,000501	0,000469
	11	0,000955	0,000885	0,000813	0,000746	0,000683	0,000623	0,000589
	12	0,001566	0,001384	0,001247	0,001134	0,001052	0,000998	0,000994
_								
		15	16	17	18	19	20	
	1	0,000201	0,000183	0,000164	0,000141	0,000106	7,57E-05	
	2	0,000654	0,000194	0,000181	0,000165	0,000134	9,52E-05	
	3	0,000825	0,000846	0,00087	0,000891	0,000502	0,000163	
	4	0,000859	0,000924	0,00099	0,001059	0,001177	0,001319	
	5	0,001013	0,001157	0,001325	0,001609	0,001842	0,000337	
	6	0,002156	0,001358	0,000344	0,000326	0,000275	0,000205	
	7	0,000312	0,000286	0,000258	0,000221	0,000156	9,72E-05	
	8	0,000789	0,000429	0,000176	0,000154	0,00012	8,38E-05	
	9	0,000505	0,000466	0,00043	0,000395	0,000326	0,000109	
	10	0,00044	0,000406	0,000372	0,000342	0,000317	0,000276	
	11	0,000563	0,000547	0,000532	0,000523	0,00031	0,000118	
L	12	0,000659	0,000196	0,000183	0,000168	0,000143	0,000106	

Tabela 6.12 - Fluxo Emergente j =1, nj =10, i = 3

Figura 6.18 - Erro de Cauchy para 30 Iterações.

6.2.1.2.4 RESULTADOS PARA A PROJEÇÃO AXIALi=4

Figura 6.19 - Fluxo Emergente j = 1, Faixa nj = 10, i = 4.

						1 - 1	
	1	2	3	4	5	6	7
1	0,000148	0,0002	0,000231	0,000236	0,000234	0,000227	0,000217
2	0,000214	0,000229	0,000216	0,000203	0,000803	0,001247	0,000926
3	0,000228	0,001525	0,001207	0,000984	0,000833	0,000701	0,0006
4	0,001831	0,001364	0,001029	0,000865	0,000755	0,000658	0,00057
5	9,12E-05	0,000728	0,001249	0,00101	0,000843	0,000704	0,000591
6	6,05E-05	8,17E-05	9,61E-05	0,000105	0,000113	0,000934	0,001283
7	7,05E-05	8,44E-05	9,73E-05	0,000106	0,000114	0,000121	0,000128
8	8,38E-05	0,000101	0,000108	0,000111	0,000114	0,000348	0,000495
9	6,91E-05	0,000223	0,000372	0,000342	0,000332	0,000329	0,000326
10	0,000435	0,000366	0,000311	0,000303	0,000304	0,000302	0,000294
11	9,46E-05	0,00074	0,000624	0,000547	0,00051	0,000473	0,000441
12	0,000117	0,000138	0,000144	0,000145	0,000539	0,000936	0,000814
	8	9	10	11	12	13	14
1	0,000209	0,000219	0,23376	0,000167	0,000139	0,000126	0,000119
2	0,000733	0,000625	0,000556	0,000498	0,000456	0,000424	0,000426
3	0,000524	0,000496	0,000463	0,000431	0,000399	0,000371	0,000371
4	0,000501	0,000463	0,000431	0,000404	0,000381	0,000362	0,00036
5	0,000509	0,000465	0,00043	0,000397	0,000363	0,000333	0,00032
6	0,000982	0,000786	0,000642	0,000535	0,000459	0,000407	0,000386
7	0,000135	0,000147	0,000171	0,005903	0,000187	0,000179	0,000187
8	0,000502	0,000538	0,000593	0,000664	0,000748	0,000877	0,001107
9	0,000325	0,000345	0,000369	0,000394	0,000415	0,000439	0,000497
10	0,00029	0,000304	0,000321	0,000339	0,000358	0,000381	0,000432
11	0,00042	0,00043	0,000441	0,000442	0,000441	0,000441	0,000471
12	0,000723	0,000687	0,000658	0,000633	0,000613	0,0006	0,000629
	15	16	17	18	19	20	
1	0,000112	0,000105	9.63E-05	8,67E-05	7.59E-05	6.46E-05	
2	0,000292	7,30E-05	6,83E-05	6,40E-05	5,90E-05	4,75E-05	
3	0,00037	0,000374	0,000375	0,000399	0,000231	5,15E-05	
4	0,000361	0,000358	0,00035	0,000348	0,000366	0,000386	
5	0,000311	0,000304	0,000298	0,000301	0,000297	0,000128	
6	0,000384	0,000262	0,000164	0,000167	0,000165	0,000146	
7	0,000198	0,000207	0,000213	0,000213	0,000183	0,000137	
8	0,001451	0,000905	0,000194	0,000207	0,000218	0,000204	
9	0,000577	0,000671	0,000783	0,000987	0,001242	0,000211	
10	0,000497	0,000566	0,000637	0,000747	0,001022	0,001418	
11	0,000515	0,000562	0,000615	0,0007	0,000475	0,000126	
12	0.000445	0.000145	0.000141	0.000137	0.00013	0.000107	

Tabela 6.13 - Fluxo Emergente j =1, nj =10, i = 4

Г

Figura 6.20 - Erro de Cauchy para 30 Iterações.

6.2.1.3 CASO COM $\phi_{in} = 10$ E POSIÇÃO DE ENTRADA $n_j = 10$ NA FONTE J = 1

Serão mostrados os resultados numéricos da sensibilidade do fluxo de radiação emergente, onde o ϕ_{in} é amplificado pelo valor 10. A tabela (6.4) representa os valores de referência do problema e a tabela (6.5) representa os valores das seções de choque.

O tempo computacional para a configuração proposta é de aproximadamente 394 segundos.

6.2.1.3.1 RESULTADOS PARA A PROJEÇÃO AXIAL i = 1

As figuras (6.21), (6.23), (6.25) e (6.27) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_i = 10$.

As tabelas (6.14), (6.15), (6.16) e (6.17) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_j = 10$.

Comparando-se com os casos anteriormente apresentados, nota-se pelos gráficos e pelas tabelas que essa configuração onde foi amplificado o valor de ϕ_{in} por um fator 10 é uma reprodução do caso onde $\phi_{in} = 1$, apenas multiplicado pelo fator 10.

As figuras (6.22), (6.24), (6.26) e (6.28) representam para cada uma de suas

respectivas projeções i, no problema i = 1, 2, 3 e 4, o erro da solução do fluxo de radiação pelo número de iterações.

Figura 6.21 - Fluxo Emergente j =1, Faixa nj =10, i = 1.

	FLUXO EMERGENTE (2J=12 E 2M=20) PARA i=1						
	- 1	0	0	4	E	0	7
1	0.000914	0.001129	0.001279	0.001506	0.00161	0 001699	0.001756
	0,000014	0,001120	0,001576	0,001500	0,00101	0,001000	0,001756
2	0,001232	0,001490	0,001376	0,001027	0,004100	0,000010	0,000044
3	0,001720	0,007040	0,000235	0,005364	0,005172	0,004766	0,004483
4	0,011034	0,000943	0,00713	0,00034	0,003703	0,005208	0,004053
5	0,001563	0,001764	0,012330	0,009369	0,007045	0,000444	0,003439
7	0,001307	0,001700	0,001730	0,001649	0,001567	0,009499	0,01163
, 8	0.001182	0,001446	0,001555	0,001573	0,001568	0,001001	0.004604
9	0,001102	0,001440	0,001000	0,001070	0,001000	0,000025	0,004004
10	0.002059	0.002104	0.002078	0.002171	0.002304	0.002409	0.002489
11	0.000584	0.002794	0.002865	0.002879	0.002982	0.003081	0.003186
12	0.000733	0.000847	0.000872	0.000911	0.002811	0.005058	0.005071
	0,000700	0,000017	0,000072	0,000011	0,002011	0,000000	0,000071
	8	9	10	11	12	13	14
1	0.001835	0.002064	2.3276	0.001724	0.00155	0.001529	0.001541
2	0.005504	0.005327	0.00521	0.005126	0.005067	0.00505	0.00531
3	0.004287	0.004314	0.004336	0.004316	0.00429	0.004286	0.004522
4	0.004255	0.004133	0.004059	0.003976	0.003921	0.003868	0.004069
5	0.004726	0.004379	0.004114	0.003855	0.003581	0.003346	0.003341
6	0.008672	0.007195	0.006171	0.005476	0.004896	0.004541	0.004521
7	0.001615	0.001635	0.001799	0.062827	0.001852	0.001592	0.00146
8	0,004691	0.005125	0,005794	0,006684	0,007822	0,009309	0,011926
9	0,002973	0,003263	0,003609	0,004006	0,004425	0,004922	0,005801
10	0,002595	0,002841	0,003133	0,003468	0,003855	0,004315	0,005099
11	0,003344	0,003701	0,004108	0,004523	0,004973	0,005479	0,006418
12	0,005191	0,005738	0,006487	0,007358	0,008571	0,010296	0,01341
	15	16	17	18	19	20	
1	0,00155	0,001539	0,001492	0,001388	0,001182	0,000983	
2	0,003676	0,001064	0,001018	0,000958	0,000854	0,000657	
3	0,004875	0,005314	0,005875	0,006764	0,004015	0,000709	
4	0,004376	0,004731	0,005068	0,005651	0,007006	0,009118	
5	0,003411	0,003493	0,003598	0,003975	0,004382	0,000972	
6	0,004776	0,002843	0,000988	0,000944	0,000879	0,000737	
7	0,001339	0,00122	0,001096	0,000954	0,000717	0,000473	
8	0,015995	0,009467	0,001505	0,00139	0,001194	0,0009	
9	0,007006	0,008562	0,010527	0,013564	0,0172	0,00229	
10	0,006135	0,007369	0,008811	0,010913	0,015066	0,020977	
11	0,007715	0,009329	0,011306	0,014166	0,008921	0,001638	
12	0,01075	0,001814	0,001864	0,001912	0,001933	0,001687	

Tabela 6.14 - Fluxo Emergente j =1, nj =10, i = 1

Figura 6.22 - Erro de Cauchy para 30 Iterações.

6.2.1.3.2 RESULTADOS PARA A PROJEÇÃO AXIALi=2

Figura 6.23 - Fluxo Emergente j =1, Faixa nj =10, i = 2.

	FL	UXO EME	RGENTE (2	2J=12 E 2M	=20) PARA	i=2	
	1	2	3	4	5	6	7
1	0,000906	0,001335	0,001747	0,002021	0,002274	0,00252	0,002777
2	0,001099	0,001461	0,001713	0,001879	0,005477	0,009657	0,00922
3	0,001028	0,006441	0,00662	0,006568	0,006575	0,006574	0,006543
4	0,004892	0,00507	0,005233	0,005414	0,005632	0,005844	0,006041
5	0,000677	0,001831	0,003541	0,004015	0,004405	0,004842	0,005293
6	0,000946	0,001385	0,001773	0,001978	0,002101	0,003818	0,005725
7	0,001653	0,002131	0,002576	0,002773	0,002865	0,002935	0,002987
8	0,002276	0,002905	0,00325	0,003284	0,003224	0,014643	0,020076
9	0,002737	0,007666	0,012776	0,011263	0,01001	0,009194	0,008352
10	0,012822	0,011656	0,010106	0,009196	0,008559	0,007895	0,007295
11	0,001694	0,009729	0,009808	0,009345	0,009031	0,008685	0,008364
12	0,000927	0,001349	0,001751	0,002025	0,005749	0,010575	0,010866
							
	8	9	10	11	12	13	14
1	0,00305	0,003521	4,5762	0,002989	0,002692	0,002667	0,002661
2	0,008928	0,008941	0,009026	0,009151	0,009317	0,009547	0,010079
3	0,006752	0,00704	0,007431	0,007729	0,008025	0,008443	0,009033
4	0,006273	0,006584	0,00693	0,007306	0,007713	0,008162	0,008718
5	0,005768	0,006248	0,006745	0,007317	0,007893	0,008569	0,009276
6	0,006633	0,007758	0,008949	0,010301	0,011948	0,013552	0,015534
7	0,003018	0,003016	0,003233	0,10495	0,00293	0,002399	0,002075
8	0,017071	0,01492	0,013403	0,012122	0,011015	0,010306	0,010003
9	0,007771	0,007344	0,007032	0,00674	0,006384	0,00616	0,00608
10	0,006752	0,006439	0,006143	0,005915	0,005692	0,005539	0,005551
11	0,008114	0,008128	0,008154	0,008167	0,008183	0,008215	0,008548
12	0,011187	0,011924	0,012607	0,013357	0,014062	0,014607	0,015902
			. = 1				
	15	16	17	18	19	20	
1	0,002653	0,002633	0,002588	0,00249	0,00225	0,001906	
2	0,007125	0,002621	0,002722	0,00277	0,002603	0,002119	
3	0,009939	0,010738	0,011669	0,012878	0,007422	0,001904	
4	0,009357	0,010098	0,010853	0,011/65	0,012812	0,013921	
5	0,010072	0,010993	0,011994	0,013193	0,012648	0,001773	
6	0,01767	0,009038	0,00192	0,001668	0,001303	0,000919	
/	0,001789	0,001534	0,001303	0,0010/1	0,000764	0,000485	
8	0,009968	0,005385	0,001383	0,001193	0,000933	0,000644	
9	0,006109	0,006091	0,006151	0,006616	0,006553	0,001391	
10	0,005588	0,005558	0,005516	0,005571	0,00603	0,006349	
11	0,008998	0,009518	0,010072	0,010909	0,006	0,00106	
12	0,010739	0,002378	0,002272	0,002117	0,001797	0,00133	

Tabela 6.15 - Fluxo Emergente j =1, nj =10, i = 2

Figura 6.24 - Erro de Cauchy para 30 Iterações.

6.2.1.3.3 RESULTADOS PARA A PROJEÇÃO AXIAL i = 3

Figura 6.25 - Fluxo Emergente j =1, Faixa nj =10, i = 3.

FLUXO EMERGENTE (2J=12 E 2M=20) PARA i=3							
1	2	3	4	5	6	7	
1 0,001345	0,002003	0,002628	0,002951	0,003188	0,00339	0,00359	
2 0,001321	0,001728	0,002001	0,002159	0,005941	0,010743	0,010629	
3 0,001091	0,010817	0,010687	0,00991	0,009345	0,008835	0,008428	
4 0,011612	0,009747	0,008614	0,00811	0,007821	0,0075	0,007184	
5 0,000688	0,002974	0,005648	0,005339	0,005275	0,005378	0,005486	
6 0,000552	0,000804	0,001022	0,001173	0,001311	0,005076	0,007472	
7 0,000752	0,001039	0,001368	0,001596	0,001801	0,002017	0,002254	
 8 0,00107	0,001519	0,001923	0,002146	0,002319	0,017806	0,02536	
9 0,001265	0,006899	0,014502	0,013298	0,012121	0,011044	0,010117	
0,015466	0,01422	0,012539	0,011329	0,010408	0,009436	0,008517	
11 0,003241	0,018319	0,017222	0,015002	0,013298	0,011842	0,010673	
12 0,002376	0,002922	0,003153	0,003191	0,013438	0,022638	0,018637	
8	9	10	11	12	13	14	
1 0,003791	0,004169	4,5812	0,00305	0,002553	0,002382	0,0022	
2 0,01053	0,010461	0,010401	0,010347	0,010298	0,010251	0,010185	
3 0,008149	0,008087	0,008058	0,008006	0,007959	0,00792	0,00806	
4 0,006915	0,006983	0,007055	0,007191	0,007325	0,007535	0,007952	
5 0,005624	0,005984	0,00646	0,006961	0,007426	0,007946	0,008906	
6 0,007474	0,007943	0,008622	0,009681	0,011012	0,01311	0,016352	
7 0,002497	0,002713	0,003221	0,11442	0,003953	0,003608	0,003371	
8 0,020699	0,017345	0,014859	0,01286	0,011204	0,009836	0,008748	
9 0,009264	0,00851	0,007824	0,00717	0,006562	0,005994	0,0055	
0,007601	0,00696	0,006363	0,005865	0,005397	0,005008	0,004691	
11 0,009553	0,008855	0,008137	0,007459	0,006832	0,006229	0,005896	
12 0,015668	0,013842	0,012476	0,011342	0,010524	0,009983	0,009942	
						,	
15	16	17	18	19	20		
1 0,002014	0,001834	0,001644	0,00141	0,001059	0,000758		
2 0,006543	0,001942	0,001815	0,001649	0,001342	0,000953		
3 0,008253	0,008461	0,008704	0,008913	0,005019	0,001632		
4 0,008597	0,009247	0,009899	0,010597	0,011776	0,013191		
5 0,010136	0,011572	0,01325	0,016096	0,018423	0,003375		
6 0,021566	0,013581	0,00344	0,003259	0,002756	0,002052		
7 0,003119	0,002861	0,002588	0,002214	0,001567	0,000973		
8 0,007894	0,004297	0,001761	0,001539	0,0012	0,000839		
9 0,005052	0,004663	0,0043	0,003956	0,003266	0,001088		
0,004405	0,004061	0,003721	0,003418	0,003169	0,002763		
0,00563	0,005475	0,005321	0,005233	0,003097	0,00118		
0,006597	0,001963	0,001836	0,001685	0,001431	0,001057		

Tabela 6.16 - Fluxo Emergente j =1, nj =10, i = 3

Figura 6.26 - Erro de Cauchy para 30 Iterações.

6.2.1.3.4 RESULTADOS PARA A PROJEÇÃO AXIALi=4

Figura 6.27 - Fluxo Emergente j =1, Faixa nj =10, i = 4.

	F	LUXO EME	RGENTE (2J=12 E 21V	I=20) PARA	A I=4		
		-	-			-		
	1	2	3	4	5	6	7	
1	0,001484	0,001998	0,002312	0,002363	0,002347	0,002275	0,002176	
2	0,002141	0,002293	0,00216	0,002035	0,008032	0,012468	0,00926	
3	0,002285	0,015253	0,012069	0,009847	0,008334	0,007012	0,006006	
4	0,018314	0,013641	0,010295	0,008657	0,007555	0,006583	0,005705	
5	0,000913	0,007277	0,012494	0,010099	0,008427	0,007044	0,005907	
6	0,000606	0,000818	0,000962	0,001052	0,001135	0,00934	0,012827	
7	0,000706	0,000845	0,000975	0,001063	0,001142	0,001212	0,001278	
8	0,000839	0,001011	0,00108	0,001113	0,001142	0,00348	0,004947	
9	0,000692	0,002233	0,003722	0,003425	0,003317	0,003292	0,003257	
10	0,004346	0,003658	0,003111	0,003027	0,003041	0,003019	0,002944	
11	0,000947	0,007399	0,006237	0,005473	0,005097	0,004734	0,004408	
12	0,001174	0,001382	0,001439	0,001457	0,005396	0,009365	0,008139	
	8	9	10	11	12	13	14	
1	0,002091	0,002193	2,3376	0,001671	0,001387	0,00126	0,001188	
2	0,007334	0,006256	0,005562	0,00498	0,004565	0,00424	0,004265	
3	0,005238	0,00496	0,004634	0,004313	0,003991	0,003709	0,00371	
4	0,005012	0,004633	0,004313	0,004041	0,003809	0,003619	0,003599	
5	0,005089	0,004651	0,004298	0,003971	0,003635	0,003331	0,003198	
6	0,009818	0,007858	0,006418	0,005354	0,004593	0,004072	0,003858	
7	0,001352	0,001468	0,001711	0,059034	0,001873	0,00179	0,001874	
8	0,005021	0,005379	0,005932	0,006642	0,007479	0,008768	0,011074	
9	0,003256	0,003451	0,003697	0,003942	0,004154	0,004388	0,004976	
10	0,002903	0.003044	0,003209	0.003387	0.003583	0.003808	0,004321	
11	0,004204	0,004301	0,004407	0,004426	0,004416	0,004409	0,004707	
12	0,007233	0,006869	0,00658	0,006336	0,006133	0,006002	0,006294	
	15	16	17	18	19	20		
1	0.001124	0.001052	0 000964	0.000868	0.00076	0.000647		
2	0.002921	0.000732	0.000684	0.000641	0.000591	0.000476		
3	0.003705	0.003741	0.003751	0.003989	0.002314	0.000516		
4	0.00361	0.003581	0.003499	0.003481	0.003663	0.003864		
5	0.003112	0.003044	0.002979	0.003011	0.002971	0.001279		
6	0.003841	0.00262	0.001643	0.001667	0.001651	0.001464		
7	0.001978	0.002069	0.002133	0.00213	0.001833	0.001371		
8	0.014514	0.009049	0.001942	0.002076	0.002181	0.002047		
9	0.005774	0.006715	0.00783	0.009872	0.01242	0.00211		
10	0.004973	0.005664	0.00637	0.007472	0.010221	0.014184		
10	0.005156	0.005623	0.006152	0.006998	0.004752	0.001265		
12	0.004454	0.001448	0.001408	0.00137	0.0013	0.001072		
14	0.004404	0.001440	0,001400	0.00107	0.0010	0.001012	4	

Tabela 6.17 - Fluxo Emergente j =1, nj =10, i = 4

Figura 6.28 - Erro de Cauchy para 30 Iterações.

6.2.2 CASO COM UMA INCLUSÃO DE RAIO R_i ($\sigma_s \ll \sigma_a$)

Nessa subseção serão apresentados os resultados das simulações obedecendo um tamanho fixo para a inclusão. As tabelas (6.18) e (6.19) apresentam os valores de referência, enquanto que a tabela (6.20) apresenta as propriedades de seção de choque.

Note que o valor da seção de choque de absorção é bem maior que o da seção de choque de espalhamento, é o que se pode chamar de problema de perturbação. Para casos onde a seção de choque de espalhamento é maior que a seção de choque de absorção a solução desse algoritmo diverge.

Figura 6.29 - Malha de Pixels com Uma Inclusão.

J	6
М	10
Ν	4 (ordem Gauss-Legendre)
\mathbf{w}_{j}	π/J (peso Gauss-Lobato)
wi	Para N=4 – Tabela (5.1) (peso Gauss-Legendre)
ϕ_{in}	1
$\mathbf{f}_{\mathbf{a}}$	5
f_s	4
f _s N _L	4 3 (ordem dos P. Legendre)
f _s N _L A _L	4 3 (ordem dos P. Legendre) 1 (Isotrópico)
f_s N_L A_L σ_a	4 3 (ordem dos P. Legendre) 1 (Isotrópico) 2/MJ
$\begin{tabular}{c} f_s \\ \hline N_L \\ \hline A_L \\ \hline \sigma_a \\ \hline \sigma_{a(inclusão)} \\ \hline \end{tabular}$	4 3 (ordem dos P. Legendre) 1 (Isotrópico) 2/MJ (2/MJ)*f _a
$\begin{tabular}{c} f_s & & \\ \hline N_L & & \\ \hline A_L & & \\ \hline \sigma_a & & \\ \hline \sigma_{a(inclusão)} & & \\ \hline \sigma_{sl} & & \\ \hline \end{tabular}$	4 3 (ordem dos P. Legendre) 1 (Isotrópico) 2/MJ (2/MJ)*f _a (1/4MJ)*A _L

Tabela 6.18 - Configuração do Problema

Tabela 6.19 - Configuração do Problema

J	6
М	10
Ν	4 (ordem Gauss-Legendre)
\mathbf{w}_{j}	π/J (peso Gauss-Lobato)
w _i	Para N=4 – Tabela (5.1) (peso Gauss-Legendre)
ϕ_{in}	10
f_a	5
$\mathbf{f}_{\mathbf{s}}$	4
N_L	3 (ordem dos P. Legendre)
A _L	l (Isotrópico)
σ _a	2/MJ
$\sigma_{a(inclusão)}$	(2/MJ)*f _a
$\sigma_{\rm sl}$	(1/4MJ)*AL
$\sigma_{sl(inclusão)}$	[(1/4MJ)*A _L]* f _s

Propriedade	Símbolo	Valor
Raio R (cm)	М	10
Raio da Inclusão R _i (cm)	M/5	2
Seção de Choque de Absorção (cm-1)	σ_{a}	0,033
Seção de Choque de Absorção (cm ⁻¹) da Inclusão	σ_{a}	0,167
Seção de Choque de Espalhamento (cm-1)	$\sigma_{\rm sl}$	0,004
Seção de Choque de Espalhamento (cm ⁻¹) da Inclusão	$\sigma_{\rm sl}$	0,017

Tabela 6.20 - Propriedades de Seção de Choque

A figura (6.30) representa a seção de choque total do sistema não-homogêneo, considerando-se as suas propriedades de absorção e de espalhamento num sistema com J = 6 e M = 10.

Figura 6.30 - Seção de Choque Total.

6.2.2.1 CASO COM $\phi_{in} = 1$ E POSIÇÃO DE ENTRADA $n_j = 10$ NA FONTE J = 1

A tabela (6.18) apresenta os valores de referência, enquanto que a tabela (6.20) apresenta as propriedades de seção de choque.

O tempo computacional para a configuração proposta é de aproximadamente 370

segundos.

6.2.2.1.1 RESULTADOS PARA A PROJEÇÃO AXIAL i = 1

As figuras (6.31), (6.33), (6.35) e (6.37) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_j = 10$.

As tabelas (6.21), (6.22), (6.23) e (6.24) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_i = 10$.

As figuras (6.32), (6.34), (6.36) e (6.38) representam para cada uma de suas respectivas projeções *i*, no problema i = 1, 2, 3 e 4, o erro da solução do fluxo de radiação pelo número de iterações.

Figura 6.31 - Fluxo Emergente j =1, Faixa nj =10, i = 1.

				20-12 2 210	1=20) 1 AN	1 - 1	
	-						
	1	2	3	4	5	6	7
1	0,000189	0,000237	0,000267	0,00029	0,000314	0,000329	0,000345
2	0,000241	0,000284	0,000308	0,000331	0,000642	0,000972	0,000894
3	0,000314	0,001157	0,001066	0,000982	0,000943	0,000878	0,000814
4	0,001879	0,001514	0,001234	0,001133	0,001056	0,000949	0,000711
5	0,000554	0,001807	0,002627	0,002027	0,001679	0,001358	0,000669
6	0,00047	0,000538	0,000539	0,000542	0,000571	0,002131	0,001549
7	0,00029	0,000335	0,000379	0,000394	0,000405	0,000418	0,000429
8	0,000252	0,0003	0,00033	0,000339	0,000339	0,000548	0,000702
9	0,000197	0,00029	0,000383	0,000383	0,000379	0,000386	0,000409
10	0,000215	0,00024	0,00026	0,000271	0,000284	0,000299	0,000325
11	0,000105	0,000348	0,000369	0,000376	0,000384	0,000362	0,000336
12	0,000137	0,000171	0,000175	0,000181	0,000388	0,000638	0,000648
	8	9	10	11	12	13	14
1	0,000354	0,000385	0,12115	0,000284	0,000279	0,000337	0,000433
2	0.000877	0.001063	0.000546	0.0004	0,000472	0,000694	0,000706
3	0,000828	0,000618	0,000405	0,000411	0,00057	0,000566	0,000576
4	0,00067	0,00055	0,000445	0,00055	0,000549	0,00054	0,000546
5	0,000698	0,000708	0,000716	0,000547	0,000517	0,000487	0,000476
6	0,00073	0.000817	0,001188	0,000702	0,000632	0,000591	0,000583
7	0.000357	0.000308	0.000327	0.005396	0,000338	0,000301	0,000281
8	0,00071	0,000504	0,000426	0,000564	0,001423	0,001529	0,001863
9	0,000427	0,000441	0,000383	0,000403	0,000633	0,001141	0,001225
10	0,00035	0.000371	0,00039	0,00036	0,000509	0,000785	0,001013
11	0,000334	0,000352	0,000382	0,000512	0,000544	0,000622	0,000656
12	0,000669	0,000692	0,000593	0,000807	0,000676	0,000662	0,001373
	15	16	17	18	19	20	ĺ
1	0.000421	0.00039	0.000358	0.000329	0.000272	0.000218	
2	0.000511	0,00022	0,00021	0,000195	0,000171	0,000133	
3	0.000595	0.000631	0.000685	0,00077	0,000477	0,000127	
4	0,000563	0,000595	0,00063	0,000689	0,000804	0,001	
5	0,000472	0.000474	0,000487	0.000521	0,000546	0,000178	
6	0,000601	0,000394	0,000198	0,000189	0,000176	0,000151	
7	0.000255	0.000233	0,000208	0,000183	0,000147	0,000106	
8	0,00244	0.001464	0,000298	0,000272	0,000229	0,000177	
9	0.001464	0.001765	0,002127	0,002704	0,003355	0,000435	
10	0.001434	0.001682	0,00192	0.002286	0,003124	0,004254	
11	0.001355	0.001674	0.001978	0.00241	0.001635	0.000459	
12	0.001876	0.00055	0.000514	0.000487	0,000484	0,000423	
		.,					

Tabela 6.21 - Fluxo Emergente j =1, nj =10, i = 1

Г

Figura 6.32 - Erro de Cauchy para 30 Iterações.

6.2.2.1.2 RESULTADOS PARA A PROJEÇÃO AXIALi=2

Figura 6.33 - Fluxo Emergente j =1, Faixa nj =10, i = 2.

	FLUXO EMERGENTE (2J=12 E 2M=20) PARA i=2						
	1	2	3	4	5	6	7
1	0,00021	0,000288	0,000348	0,000398	0,000457	0,00051	0,000556
2	0,000208	0,00028	0,000342	0,000391	0,000779	0,001211	0,001161
3	0,000178	0,000771	0,000807	0,000818	0,000819	0,000692	0,000597
4	0,000574	0,000546	0,000519	0,000511	0,00052	0,000541	0,000704
5	0,000127	0,000252	0,000412	0,000488	0,000567	0,000626	0,000739
6	0,000193	0,000285	0,000433	0,000625	0,000/3/	0,000836	0,000895
/	0,00048	0,000628	0,000666	0,000705	0,00075	0,000766	0,000742
8	0,000552	0,000675	0,000723	0,00072	0,000696	0,001878	0,002426
9	0,000642	0,001178	0,001745	0,001566	0,001413	0,001337	0,001302
10	0,001431	0,001408	0,001462	0,001413	0,001321	0,001229	0,001184
11	0,000265	0,001129	0,001176	0,001146	0,001121	0,001171	0,001263
12	0,000185	0,000279	0,000342	0,000376	0,000779	0,001305	0,001351
-	-	_					
	8	9	10	11	12	13	14
1	0,000584	0,000637	0,32087	0,000548	0,000538	0,000667	0,000685
2	0,001046	0,001376	0,000962	0,000949	0,001156	0,001344	0,001439
3	0,001017	0,001096	0,001025	0,001068	0,001201	0,001246	0,001268
4	0,001083	0,001254	0,001183	0,001049	0,001119	0,001174	0,00119
5	0,001141	0,001584	0,001567	0,001042	0,001129	0,001197	0,001239
6	0,000857	0,001104	0,002169	0,001311	0,001457	0,001607	0,001785
7	0,000736	0,000631	0,000613	0,009486	0,000494	0,000431	0,00039
8	0,002086	0,001539	0,001214	0,001504	0,002355	0,001282	0,001192
9	0,001259	0,001192	0,001069	0,001142	0,001409	0,001548	0,000858
10	0,001146	0,001097	0,001034	0,001323	0,001467	0,001357	0,00097
11	0,001294	0,001278	0,001232	0,001832	0,001806	0,001368	0,000932
12	0,001402	0,001483	0,001603	0,002842	0,001707	0,001268	0,001618
	u						
	15	16	17	18	19	20	
1	0,000704	0,000689	0,000654	0,000645	0,00066	0,000607	
2	0,001155	0,000693	0,000744	0,000744	0,000652	0,000549	
3	0,001308	0,001383	0,001499	0,00161	0,000962	0,00036	
4	0,001195	0,001246	0,001319	0,001397	0,001437	0,001499	
5	0,001266	0,001318	0,001409	0,001506	0,001408	0,000275	
6	0,001978	0,001081	0,000346	0,000308	0,000249	0,000184	
7	0,000341	0,000292	0,000245	0,000205	0,000157	0,000105	
8	0,001193	0,000708	0,000272	0,000231	0,000177	0,000122	
9	0,000794	0,000791	0,000783	0,000814	0,000792	0,000237	
10	0,00073	0,000719	0,000699	0,000688	0,000726	0,000716	
11	0,001181	0,001243	0,001247	0,001268	0,000731	0,000193	
12	0,001428	0,000569	0,000511	0,000442	0,000379	0,000278	L

Tabela 6.22 - Fluxo Emergente j =1, nj =10, i = 2

Figura 6.34 - Erro de Cauchy para 30 Iterações.

6.2.2.1.3 RESULTADOS PARA A PROJEÇÃO AXIAL i = 3

Figura 6.35 - Fluxo Emergente j = 1, Faixa nj = 10, i = 3.

	1	2	3	4	5	6	7		
1	0,000293	0,000421	0,00048	0,000515	0,000578	0,000638	0,000682		
2	0,00022	0,0003	0,000371	0,000453	0,000892	0,00139	0,001346		
3	0,000177	0,001199	0,001205	0,001154	0,001124	0,001073	0,001089		
4	0,001258	0,001109	0,001003	0,000969	0,000951	0,000907	0,001002		
5	0,000118	0,00037	0,000663	0,000654	0,000677	0,000696	0,000611		
6	9,35E-05	0,000133	0,000174	0,000205	0,000232	0,000627	0,000754		
7	0,000132	0,000177	0,000226	0,000263	0,000296	0,00033	0,000372		
8	0,000184	0,000254	0,000316	0,000358	0,000391	0,001963	0,002727		
9	0,000201	0,000795	0,001586	0,00148	0,001392	0,001329	0,001275		
10	0,001676	0,00162	0,001512	0,001369	0,00127	0,001216	0,001196		
11	0,00055	0,002151	0,002202	0,001977	0,001753	0,001582	0,001456		
12	0,000642	0,000713	0,000711	0,000673	0,001703	0,002642	0,002223		
	8	9	10	11	12	13	14		
1	0,0007	0,000742	0,32368	0,000654	0,000513	0,000453	0,000368		
2	0,00138	0,003085	0,00184	0,001142	0,001068	0,001008	0,001063		
3	0,001831	0,001434	0,000964	0,000812	0,000872	0,000939	0,001003		
4	0,001174	0,001116	0,000972	0,000969	0,001258	0,001421	0,001359		
5	0,000828	0,001212	0,001528	0,001621	0,001872	0,001823	0,001758		
6	0,000699	0,000994	0,002129	0,002201	0,002761	0,002448	0,002181		
7	0,000438	0,000519	0,000703	0,011027	0,00082	0,000846	0,000861		
8	0,002258	0,002018	0,00184	0,002152	0,002176	0,000845	0,000762		
9	0,001178	0,001077	0,001185	0,001701	0,002105	0,001679	0,000635		
10	0,001148	0,001228	0,001421	0,001761	0,001848	0,001272	0,000687		
11	0,001323	0,001352	0,001469	0,002207	0,001809	0,001015	0,00063		
12	0,001916	0,001828	0,00219	0,003512	0,001276	0,00082	0,000973		
	15	16	17	18	19	20			
1	0,000338	0,000309	0,000273	0,000234	0,000184	0,000133			
2	0,000844	0,000459	0,000359	0,000272	0,00022	0,000158			
3	0,001103	0,001134	0,00118	0,001238	0,000807	0,000309			
4	0,001306	0,001236	0,001283	0,001373	0,001459	0,001566			
5	0,001618	0,001504	0,001649	0,00193	0,00211	0,000561			
6	0,002544	0,001721	0,000704	0,000723	0,00061	0,00037			
7	0,00078	0,000614	0,000442	0,00037	0,000297	0,000188			
8	0,000844	0,000596	0,000327	0,000269	0,000206	0,00014			
9	0,00056	0,000534	0,00049	0,000448	0,000381	0,000193			
10	0,000485	0,000453	0,000416	0,000378	0,000349	0,000274			
11	0,000721	0,000706	0,000675	0,00065	0,000414	0,000194			
12	0,000836	0,000353	0,000323	0,000285	0,000232	0,000176			

Tabela 6.23 - Fluxo Emergente j =1, nj =10, i = 3

Figura 6.36 - Erro de Cauchy para 30 Iterações.

6.2.2.1.4 RESULTADOS PARA A PROJEÇÃO AXIAL i = 4

Figura 6.37 - Fluxo Emergente j = 1, Faixa nj = 10, i = 4.

	FLUXO EMERGENTE (2J=12 E 2M=20) PARA I=4									
	1	2	3	4	5	6	7			
1	0,000327	0,000396	0,00044	0,000451	0,000453	0,000461	0,000473			
2	0,000452	0,000509	0,000515	0,00051	0,001318	0,00236	0,002496			
3	0,000572	2,07E-03	1,90E-03	1,87E-03	1,82E-03	1,58E-03	1,33E-03			
4	0,002215	2,06E-03	1,76E-03	1,72E-03	1,60E-03	1,37E-03	9,75E-04			
5	0,00019	0,000875	0,00184	1,97E-03	2,32E-03	2,05E-03	8,89E-04			
6	0,000129	0,000172	0,000209	0,000234	0,000256	0,001111	0,001467			
7	0,000164	1,87E-04	2,06E-04	2,22E-04	2,36E-04	0,00025	0,000267			
8	0,000178	2,12E-04	2,25E-04	2,33E-04	2,38E-04	4,76E-04	6,28E-04			
9	0,000132	2,97E-04	4,64E-04	4,41E-04	4,35E-04	4,38E-04	4,46E-04			
10	0,000467	4,08E-04	3,69E-04	3,66E-04	3,70E-04	3,77E-04	3,85E-04			
11	0,000135	7,94E-04	6,90E-04	6,18E-04	5,81E-04	0,000555	0,000546			
12	0,000192	0,000237	0,000267	0,000277	0,000676	0,001088	0,000989			
	8	9	10	11	12	13	14			
1	0,000472	0,000504	0,12419	0,000298	0,000204	0,0002	0,000255			
2	0,00218	0,001903	0,000594	0,000314	0,000348	0,000518	0,000513			
3	1,21E-03	0,000732	0,000397	0,000376	0,000509	0,000476	0,000464			
4	9,03E-04	0,000656	0,000472	0,000536	0,000515	0,000495	0,000478			
5	9,92E-04	0,000859	0,000702	0,000476	0,000453	0,000422	0,000394			
6	0,001148	0,001303	0,001468	0,00057	0,00051	0,000483	0,000474			
7	0,000223	0,000229	0,000319	0,004924	0,000514	0,000477	0,000465			
8	6,39E-04	0,000432	0,000354	0,000443	0,001175	0,001659	0,002055			
9	4,53E-04	0,000477	0,000359	0,000326	0,000508	0,000856	0,001094			
10	3,98E-04	0,00042	0,000444	0,000349	0,000467	0,000604	0,000772			
11	0,00055	0,000579	0,0006	0,000701	0,00055	0,000489	0,00045			
12	0,000916	0,000884	0,000873	0,001016	0,0005	0,000354	0,00053			
	15	16	17	18	19	20				
1	0,00024	0,000224	0,000201	0,000182	0,000169	0,000146				
2	0,000372	0,000147	0,000138	0,000129	0,000119	9,65E-05				
3	0,000449	0,000446	0,000442	0,00046	0,000281	8,93E-05				
4	0,000463	0,000454	0,000446	0,000443	0,000436	0,000439				
5	0,000368	0,000357	0,000359	0,000364	0,000346	0,000203				
6	0,000476	0,000384	0,000307	0,000303	0,000281	0,000249				
7	0,000448	0,000447	0,000463	0,000457	0,000397	0,00034				
8	0,002202	0,00135	0,000533	0,000551	0,000557	0,000525				
9	0,00165	0,001856	0,001794	0,001724	0,001753	0,00046				
10	0,001426	0,001662	0,001718	0,001586	0,00179	0,0018				
11	0,001061	0,001159	0,001042	0,00099	0,000644	0,000253				
12	0,000653	0,000331	0,000315	0,000294	0,000269	0,000222				

Tabela 6.24 - Fluxo Emergente j =1, nj =10, i = 4

Figura 6.38 - Erro de Cauchy para 30 Iterações.

6.2.2.2 CASO COM $\phi_{in} = 10$ E POSIÇÃO DE ENTRADA $n_j = 10$ na fonte J = 1

A tabela (6.19) apresenta os valores de referência, enquanto que a tabela (6.20) apresenta as propriedades de seção de choque.

O tempo computacional para a configuração proposta é de aproximadamente 422 segundos.

6.2.2.2.1 RESULTADOS PARA A PROJEÇÃO AXIAL i = 1

Comparando-se com os casos anteriormente apresentados, um comportamento linear da solução é observado, pois nota-se pelos gráficos e pelas tabelas que essa configuração onde foi amplificado o valor de ϕ_{in} por um fator 10 é uma reprodução do caso onde $\phi_{in} = 1$, apenas multiplicado pelo fator 10, portanto é desnecessário apresentar as demais *i* projeções.

As figuras (6.39) representa o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e na projeção i = 1. A radiação incidente é originada na fonte j = 1 e viaja pelo meio através da faixa $n_j = 10$.

A tabela (6.25) representa o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e na projeção *i* = 1. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_j = 10$.

A figura (6.40) representa para a projeção i = 1, o erro da solução do fluxo de radiação pelo número de iterações.

Figura 6.39 - Fluxo Emergente j =1, Faixa nj =10, i = 1.

-	-	0	0	4	F	0	-		
	0.004007	2	3	4	C 000440	0	1		
1	0,001887	0,002374	0,002668	0,002897	0,003142	0,003295	0,003449		
2	0,002414	0,002643	0,00306	0,003307	0,000423	0,009719	0,000935		
3	0,003142	0,011373	0,01000	0,009019	0,009420	0,000700	0,000130		
4	0,016/91	0,015147	0,012343	0,011331	0,01056	0,009493	0,007107		
5	0,005541	0,016069	0,026274	0,020275	0,010790	0,013367	0,006696		
5	0,004699	0,00000	0,005369	0,003424	0,005714	0,021315	0,01549		
/	0,0029	0,003355	0,003792	0,00394	0,004049	0,004100	0,004292		
0	0,002517	0,003004	0,003304	0,003395	0,00339	0,000460	0,00702		
9	0,001969	0,002897	0,003827	0,003829	0,003796	0,003864	0,004094		
10	0,00215	0,002396	0,002597	0,002711	0,002030	0,002994	0,003252		
10	0,001047	0,003461	0,00369	0,003763	0,00364	0,003010	0,00330		
12	0,001374	0,001709	0,001754	0,001811	0,003882	0,006376	0,006482		
		0	40		40	40			
	8	9	10	11	12	13	14		
1	0,003537	0,003849	1,2115	0,002842	0,002792	0,003368	0,004337		
2	0,008777	0,010632	0,005461	0,003998	0,004721	0,006939	0,00706		
3	0,008281	0,006178	0,00405	0,004114	0,005704	0,00566	0,005/62		
4	0,006704	0,005505	0,00445	0,005501	0,005488	0,005404	0,005464		
5	0,006977	0,007079	0,00/161	0,0054/2	0,0051/6	0,004867	0,004/66		
6	0,007306	0,00817	0,011876	0,007025	0,006317	0,005915	0,005828		
7	0,003574	0,003082	0,003274	0,053965	0,003379	0,003012	0,002809		
8	0,007107	0,00504	0,004259	0,005639	0,014231	0,015289	0,01863		
9	0,004275	0,004411	0,003837	0,004032	0,006332	0,011409	0,012248		
10	0,0035	0,00371	0,003898	0,003603	0,005095	0,007852	0,010136		
11	0,00334	0,003518	0,00382	0,005117	0,005443	0,00622	0,006565		
12	0,006691	0,00692	0,005929	0,008068	0,006765	0,006617	0,013736		
							,		
	15	16	17	18	19	20	1		
1	0,004216	0,003905	0,003581	0,003295	0,002725	0,002186	1		
2	0,005107	0,002203	0,002098	0,00195	0,001714	0,00133	1		
3	0,005949	0,006315	0,006851	0,007699	0,00477	0,001267	1		
4	0,005633	0,005951	0,006305	0,006895	0,008036	0,009997	1		
5	0,004717	0,004742	0,004871	0,005209	0,005459	0,001781	1		
6	0,006014	0,003938	0,001981	0,001895	0,001765	0,001509	1		
7	0,002553	0,002326	0,002085	0,001831	0,001476	0,001058	1		
8	0,024397	0,014644	0,002984	0,00272	0,002295	0,001767	1		
9	0,014641	0,017654	0,021271	0,027038	0,033547	0,00435	1		
10	0,014338	0,016823	0,019199	0,022861	0,031241	0,04254	1		
11	0,013556	0,016745	0,019786	0,024105	0,01635	0,004595	1		
12	0,018762	0,005502	0,005138	0,004876	0,004843	0,004232	i i		

Tabela 6.25 - Fluxo Emergente j =1, nj =10, i = 1

Figura 6.40 - Erro de Cauchy para 30 Iterações.

As demais *i* projeções (i = 2, i = 3 e i = 4) reproduzem figuras semelhantes aos casos onde $\phi_{in} = 1$, porém são amplificadas pelo fator 10.

6.3 SOLUÇÃO DO PROBLEMA DIRETO PARA O SISTEMA COM ESPALHAMENTO ANISOTRÓPICO

Os valores de referência do problema em estudo são mostrados por tabelas em cada caso.

6.3.1 CASO COM UMA INCLUSÃO DE RAIO R_i E COM $\phi_{in} = 1$ E POSIÇÃO DE ENTRADA $n_i = 10$ NA FONTE J = 1

Nessa subseção serão apresentados os resultados das simulações obedecendo um tamanho fixo R_i para a inclusão. A tabela (6.26) apresenta os valores de referência, enquanto que a tabela (6.27) apresenta as propriedades de seção de choque.

O tempo computacional para a configuração proposta é de aproximadamente 380 segundos.

J	6
М	10
w _j	π/J
w _i	Para N=4 – Tabela (5.1)
Ν	4
$\phi_{\rm in}$	1
\mathbf{f}_{a}	5
$\mathbf{f}_{\mathbf{s}}$	4
N _L	3(ordem dos P. Legendre)
A _L	[1, 0, 48, 0, 54, 0, 14]
σ_{a}	2/MJ
$\sigma_{a(inclusão)}$	(2/MJ)*f _a
$\sigma_{\rm sl}$	(1/4MJ)*A _L
$\sigma_{sl(inclusão)}$	[(1/4MJ)*A _L]* f _s

Tabela 6.26 - Configuração do Problema

Propriedade	Símbolo	Valor
Raio R (cm)	М	10
Raio da Inclusão (cm)	M / 5	2
Seção de Choque de Absorção (cm ⁻¹)	σ_{a}	0,033
Seção de Choque de Absorção (cm ⁻¹) da Inclusão	σ_{a}	0,167
Seção de Choque de Espalhamento (cm ⁻¹)	$\sigma_{\rm sl}$	0,004*[A _l]
Seção de Choque de Espalhamento (cm ⁻¹) da Inclusão	$\sigma_{\rm sl}$	0,017*[A _l]

Tabela 6.27 - Propriedades de Seção de Choque

6.3.1.1 RESULTADOS PARA A PROJEÇÃO AXIAL i = 1.

As figuras (6.41), (6.43), (6.45) e (6.47) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_j = 10$.

As tabelas (6.28), (6.29), (6.30) e (6.31) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 1 e viaja pelo meio através da faixa $n_i = 10$.

As figuras (6.42), (6.44), (6.46) e (6.48) representam para cada uma de suas respectivas projeções *i*, no problema i = 1, 2, 3 e 4, o erro da solução do fluxo de radiação pelo número de iterações.

Figura 6.41 - Fluxo Emergente j =1, Faixa nj =10, i = 1.

					1=20) T AT	(1-1	
	1	2	3	4	5	6	
1	0,000219	0.000261	0,00029	0.000307	0,000316	0.000332	0,000352
2	0,000419	0,000475	0,000473	0,000511	0,000847	0,001237	0,001204
3	0,000218	0.000939	0.000892	0.000799	0,000756	0.0007	0,00069
4	0,002082	0,001705	0,001382	0,001246	0,001143	0,001018	0,000724
5	0,000573	0.004511	0,007183	0.005184	0,004055	0.003089	0,00124
6	0,000826	0,000981	0,000998	0,001127	0,001346	0,002835	0,00191
7	0,000323	0.000392	0.000425	0.000438	0,000445	0,000455	0,00046
8	0,000184	0,000228	0,000243	0,000256	0,00027	0,000399	0,00049
9	0,000243	0,000339	0,000425	0,000432	0,000438	0,000448	0,00046
10	0,000342	0,000375	0,000392	0,000399	0,000409	0,000457	0,000572
11	0,000359	0,000494	0,000535	0,000546	0,000535	0,000509	0,00048
12	0,000213	0,00026	0,000264	0,000264	0,000361	0,000491	0,00049
			•	•	•	•	
	8	9	10	11	12	13	14
1	0,000362	0,000408	0,13197	0,000456	0,00044	0,000514	0,000639
2	0,001177	0,001171	0,000724	0,000636	0,00074	0,000918	0,00092
3	0,00077	0,000505	0,000359	0,000356	0,000387	0,00036	0,00032
4	0,000639	0,000517	0,000424	0,000537	0,000523	0,000507	0,00050
5	0,001557	0,001624	0,001551	0,000983	0,000907	0,000833	0,00080
6	0,000954	0,001009	0,001279	0,000788	0,000696	0,00064	0,00061
7	0,000396	0.000352	0.000414	0.002242	0,000644	0.000598	0,00058
8	0,000514	0,000415	0,000367	0,000456	0,000849	0,000838	0,00095
9	0,000483	0,000517	0,00044	0,000496	0,000937	0,001983	0,00219
10	0,00066	0,000682	0,000687	0,000621	0,000769	0,001053	0,001314
11	0,000479	0,000496	0,000524	0,000567	0,000538	0,000558	0,00058
12	0,000498	0,000507	0,000486	0,000601	0,000433	0,000404	0,000714
	15	16	17	18	19	20	
1	0,000639	0,000605	0,00055	0,000509	0,000462	0,000376	
2	0,000816	0,000649	0,000637	0,000614	0,00058	0,00052	
3	0,000283	0,000253	0,000231	0,000202	0,00016	0,000127	
4	0,000521	0,000549	0,000579	0,000631	0,000737	0,000919	
5	0,000798	0,000797	0,000817	0,000903	0,001003	0,000105	
6	0,00061	0,000432	0,000275	0,000263	0,000239	0,000208	
7	0,000569	0,000544	0,000505	0,000483	0,000465	0,000364	
8	0,001159	0,000834	0,000433	0,000386	0,00031	0,000232	
9	0,002714	0,003363	0,004193	0,005492	0,006985	0,000523	
10	0,00184	0,002129	0,002405	0,002854	0,003818	0,005042	
11	0,001087	0,001302	0,001537	0,001877	0,001306	0,000394	
12	0,000903	0,00047	0,000444	0,000431	0,000414	0,000343	

Tabela 6.28 - Fluxo Emergente j =1, nj =10, i = 1

Figura 6.42 - Erro de Cauchy para 30 Iterações.

6.3.1.2 RESULTADOS PARA A PROJEÇÃO AXIAL i = 2.

Figura 6.43 - Fluxo Emergente j =1, Faixa nj =10, i = 2.

	1	2	3	4	5	6				
1	0,000123	0,000165	0,000206	0,000231	0,000253	0,000282	0,0003			
2	0,000293	0,00039	0,000459	0,000561	0,001026	0,00152	0,001454			
3	0,00012	0,00072	0,000804	0,00083	0,000864	0,000847	0,000898			
4	0,000744	0,000802	0,0008	0,000804	0,000803	0,000785	0,00093			
5	0,000187	0,000681	0,001249	0,001242	0,001262	0,001268	0,001259			
6	0,000558	0,000792	0,001094	0,001673	0,002067	0,002134	0,00214			
7	0,000558	0,000783	0,00082	0,000846	0,000857	0,000855	0,00083			
8	0,000284	0,000363	0,00039	4,04E-04	4,15E-04	1,54E-03	2,09E-0			
9	0,000601	2,37E-03	4,30E-03	3,80E-03	3,41E-03	3,18E-03	2,95E-0			
10	0,001192	0,00132	0,001652	0,001723	0,00162	0,001589	0,00174			
11	0,000585	0,00077	0,000901	0,00092	0,0009	0,000936	0,00103			
12	0,000218	0,000293	0,000347	0,000377	0,000935	0,001687	0,00175			
	8	9	10	11	12	13	1.			
1	0,000326	0,000371	0,32825	0,000589	0,000598	0,000717	0,00073			
2	0,001331	0,001877	0,001475	0,001572	0,001953	0,002025	0,0021			
3	0,001669	0,001473	0,001236	0,001205	0,001249	0,001247	0,00120			
4	0,001103	0,001079	0,000963	0,000811	0,000825	0,000831	0,00080			
5	0,002231	0,00321	0,003144	0,001889	0,002036	0,00215	0,00222			
6	0,002119	0,002147	0,002799	0,001649	0,001723	0,001812	0,0019			
7	0,000873	0,00078	0,000868	0,00201	0,001132	0,001044	0,00098			
8	1,83E-03	0,001357	0,001108	0,001435	0,002349	0,001379	0,0013			
9	2,80E-03	0,002658	0,00212	0,002691	0,004033	0,004844	0,00245			
10	0,001849	0,001779	0,001655	0,002124	0,002118	0,001805	0,00116			
11	0,001095	0,001065	0,000994	0,001274	0,001278	0,00097	0,00072			
12	0,001842	0,001988	0,002205	0,004098	0,002432	0,00178	0,00235			
	15	16	17	18	19	20				
1	0,00076	0,000738	0,000679	0,00064	0,000628	0,000534				
2	0,002058	0,001801	0,001982	0,002051	0,001971	0,001907				
3	0,001137	0,001133	0,001178	0,001173	0,00068	0,000307				
4	0,000776	0,000766	0,000763	0,000746	0,000655	0,000577				
5	0,002276	0,002397	0,002596	0,002839	0,002702	0,000243				
6	0,002054	0,00118	0,000491	0,000448	0,000372	0,000297				
7	0,000921	0,000843	0,000742	0,000668	0,000588	0,00041				
8	0,001393	0,000882	0,000387	0,000323	0,000232	0,000153				
9	0,002258	0,002278	0,002327	0,002539	0,002549	0,000275				
10	0,000774	0,000735	0,000683	0,000637	0,000623	0,000597				
11	0,000677	0,000648	0,000596	0,00052	0,000366	0,000225				
12	0.002045	0.000648	0.000582	0.000502	0.000432	0.000324				

Tabela 6.29 - Fluxo Emergente j =1, nj =10, i = 2

Figura 6.44 - Erro de Cauchy para 30 Iterações.

6.3.1.3 RESULTADOS PARA A PROJEÇÃO AXIAL i = 3.

Figura 6.45 - Fluxo Emergente j =1, Faixa nj =10, i = 3.

	FLUXO EMERGENTE (2J=12 E 2M=20) PARA i=3									
	1	2	3	4	5	6	7			
1	0,000397	0,000512	0,000534	0,000536	0,000553	0,000567	0,000574			
2	0,000216	0,000307	0,000372	0,000464	0,000854	0,001282	0,001258			
3	9,56E-05	0,000293	0,000411	0,00051	0,000611	0,000657	0,000758			
4	0,002046	0,001756	0,001546	0,001458	0,001409	0,001326	0,001355			
5	0,000108	0,001044	0,002132	0,001941	0,001868	0,001792	0,001255			
6	0,000314	0,000444	0,000556	0,000681	0,000784	0,001161	0,001268			
7	0,000173	0,000234	0,000289	0,000325	0,000352	0,000379	0,000422			
8	0,000165	0,000236	0,000285	0,00033	0,000383	0,000811	0,001074			
9	0,000334	0,001597	0,003274	0,002979	0,002715	0,002476	0,002282			
10	0,001699	0,001653	0,001578	0,001478	0,001407	0,001399	0,00148			
11	0,0014	0,002359	0,002913	0,002726	0,002331	0,002027	0,001788			
12	0,000897	0,000865	0,00079	0,000717	0,001067	0,001397	0,001181			
_										
	8	9	10	11	12	13	14			
1	0,000565	0,000601	0,35021	0,000666	0,000541	0,000495	0,000444			
2	0,001312	0,002689	0,001746	0,001266	0,001221	0,001109	0,001173			
3	0,002018	0,001849	0,001333	0,001008	0,000964	0,001037	0,001068			
4	0,001548	0,001448	0,001245	0,001332	0,001774	0,002006	0,001838			
5	0,001862	0,002908	0,003882	0,004474	0,005254	0,004931	0,004554			
6	0,001221	0,001541	0,00236	0,002189	0,002533	0,00221	0,00192			
7	0,000508	0,000622	0,000992	0,00239	0,001579	0,001657	0,001754			
8	0,001026	0,001072	0,001122	0,001393	0,001901	0,001091	0,001073			
9	0,002096	0,001935	0,002277	0,003456	0,00445	0,003571	0,001255			
10	0,001545	0,00165	0,001851	0,002342	0,00245	0,001788	0,001043			
11	0,001587	0,001507	0,001476	0,001816	0,001465	0,000865	0,000585			
12	0,001029	0,000965	0,001038	0,001674	0,000756	0,000525	0,00058			
	1									
	15	16	17	18	19	20				
1	0,000423	0,000394	0,000347	0,000293	0,000228	0,000159				
2	0,001116	0,000925	0,000816	0,000702	0,000608	0,000491				
3	0,000984	0,000904	0,000861	0,000807	0,000549	0,00031				
4	0,001693	0,001541	0,001576	0,001676	0,001825	0,002023				
5	0,00391	0,003328	0,003681	0,004574	0,005379	0,000402				
6	0,002066	0,00146	0,000777	0,000776	0,000679	0,000501				
/	0,001/18	0,001506	0,001224	0,001116	0,001009	0,000658				
8	0,00117	0,000898	0,00057	0,000466	0,000332	0,000217				
10	0,00114	0,001114	0,0010/2	0,001051	0,000400	0,000305				
10	0,000715	0,000553	0,000575	0,000494	0,000423	0,000325				
10	0,00058	0,000553	0,000528	0,000502	0,000345	0,000195				
12	0,000488	0,000227	0,000201	0,000173	0,000126	0,40E-05				

Tabela 6.30 - Fluxo Emergente j =1, nj =10, i = 3

Figura 6.46 - Erro de Cauchy para 30 Iterações.

6.3.1.4 RESULTADOS PARA A PROJEÇÃO AXIAL i = 4.

Figura 6.47 - Fluxo Emergente j =1, Faixa nj =10, i = 4.

FLUXO EMERGENTE (2J=12 E 2M=20) FARA I=4									
	1	2	3	4	5	6	7		
1	0,00029	0,000323	0,000337	0,000337	0,000328	0,000324	0,000332		
2	0,000396	0,000477	0,000486	0,000492	0,001363	0,00249	0,002644		
3	0,000497	0,00195	0,001847	0,001836	0,001806	0,001559	0,001221		
4	0,001184	0,001354	0,001228	0,001199	0,001133	0,000991	0,000		
5	0,000175	0,001779	0,003992	0,004127	0,004757	0,004075	0,00163		
6	0,000291	0,000404	0,000474	0,000577	0,000667	0,00164	0,00188		
7	0,000206	0,00024	0,000253	0,000264	0,000274	0,000286	0,000305		
8	8,96E-05	0,000118	0,000123	0,000133	0,000145	0,000272	0,00036		
9	0,000198	0,000688	0,001172	0,001055	0,001002	0,000978	0,000952		
10	0,000378	0,000358	0,000353	0,000363	0,000378	0,000419	0,0005		
11	0,000387	0,000432	0,000487	0,000512	0,000518	0,000537	0,000584		
12	0,000252	0,000306	0,000337	0,000347	0,00112	0,001908	0,00169		
	8	9	10	11	12	13	14		
1	0,000337	0,00036	0,13367	0.000285	0,000234	0,000259	0,00032		
2	0.002345	0.002104	0,000735	0,00047	0,000532	0,000689	0,00069		
3	0,001072	0.000642	0,000397	0.000401	0,000504	0,000472	0,000448		
4	0.000566	0,000427	0,000338	0,000361	0,000339	0,00032	0.00029		
5	0.001971	0,001747	0,001298	0,000704	0,000639	0,000574	0,0005		
6	0.001435	0.001609	0.001737	0.000654	0.00055	0.000499	0.000472		
7	0,000254	0.000258	0,000391	0,002271	0.001119	0.001026	0,000964		
8	0,000381	0,00028	0,000248	0,000338	0,000807	0,001036	0,00128		
9	0,000937	0.000984	0,000692	0.000597	0.001095	0.002213	0,00306		
10	0,00061	0.000672	0,000725	0.000637	0,000779	0.000926	0,00103		
11	0,000635	0,000669	0,000677	0,000594	0,000527	0,000474	0,00045		
12	0,00153	0,001462	0,001428	0,00171	0,000797	0,000549	0,000866		
	15	16	17	18	19	20			
1	0.000334	0.000336	0.00032	0.000304	0.000302	0.000251			
2	0.000591	0.000407	0,000411	0.000409	0,000411	0.0004			
3	0.000408	0.000381	0,00036	0,000341	0,000201	8,83E-05			
4	0,000279	0,000269	0,000259	0,000249	0,000228	0,000205			
5	0,00044	0,00039	0,00036	0,00033	0,00028	0,000118			
6	0.000455	0.000406	0,000377	0.000367	0,000328	0,000286			
7	0.000923	0.000923	0,00093	0.000959	0,001009	0,000917			
8	0.001472	0,00117	0,000842	0.000849	0,000743	0.000636			
9	0.005119	0,00586	0,005675	0,005461	0,005624	0,000598			
10	0,001543	0,001738	0,001758	0,001605	0,001713	0,001636			
11	0.000697	0.000673	0,000567	0,000473	0,00038	0,000295			
12	0.001064	0.000362	0,000339	0.000313	0,000259	0,000195			
							4		

Tabela 6.31 - Fluxo Emergente j =1, nj =10, i = 4

Figura 6.48 - Erro de Cauchy para 30 Iterações.

6.3.2 CASO COM UMA INCLUSÃO DE RAIO R_i E COM $\phi_{in} = 1$ E POSIÇÃO DE ENTRADA $n_j = 10$ NA FONTE J = 3

Nessa subseção serão apresentados os resultados numéricos usando-se a posição de entrada de radiação J = 3.

A tabela (6.26) apresenta os valores de referência, enquanto que a tabela (6.27) apresenta as propriedades de seção de choque.

O tempo computacional para a configuração proposta é de aproximadamente 372 segundos.

6.3.2.1 RESULTADOS PARA A PROJEÇÃO AXIAL i = 1.

As figuras (6.49), (6.51), (6.53) e (6.55) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 3 e viaja pelo meio através da faixa $n_i = 10$.

As tabelas (6.32), (6.33), (6.34) e (6.35) representam o fluxo de radiação emergente e espalhado em cada uma das 2*J* vistas do problema (2*J* = 12) e em suas respectivas projeções *i*, no problema *i* = 1, 2, 3 e 4. A radiação incidente é originada na fonte *j* = 3 e viaja pelo meio através da faixa $n_j = 10$.

As figuras (6.50), (6.52), (6.54) e (6.56) representam para cada uma de suas respectivas projeções *i*, no problema i = 1, 2, 3 e 4, o erro da solução do fluxo de

radiação pelo número de iterações.

Figura 6.49 - Fluxo Emergente j =3, Faixa nj =10, i = 1.

	FLUXO EMERGENTE (2J=12 E 2M=20) PARA i=1										
	1	2	3	4	5	6	7				
1	0,000143	0,00017	0,000201	0,00022	0,000228	0,000236	0,00025				
2	0,000162	0,000193	0,000191	0,000196	0,000429	0,000737	0,000757				
3	0,000117	0,000158	0,000195	0,000212	0,000232	0,000255	0,00027				
4	0,000515	0,000551	0,000516	0,00049	0,000554	0,000606	0,000445				
5	0,000381	0,000557	0,000491	0,000447	0,000422	0,000383	0,000326				
6	0,000605	0,000654	0,000585	0,000565	0,000563	0,000536	0,000578				
7	0,000159	0,0004	0,00063	0,000583	0,000564	0,000542	0,000482				
8	0,000109	0,000145	0,00017	0,000202	0,000232	0,000667	0,000902				
9	9,48E-05	0,000116	0,000129	0,000136	0,000141	0,00015	0,000163				
10	5,25E-05	8,03E-05	9,59E-05	0,000103	0,000109	0,000198	0,000278				
11	0,000198	0,000312	0,000417	0,000406	0,0004	0,000393	0,000389				
12	0,0002	0,000226	0,000231	0,000228	0,000228	0,000242	0,000259				
	8	9	10	11	12	13	14				
1	0,000264	0,000281	0,000298	0,000305	0,000333	0,000393	0,000332				
2	0,000761	0,000474	0,000703	0,001323	0,001204	0,000934	0,001				
3	0,00024	0,000245	0,084089	0,000316	0,000298	0,000281	0,000263				
4	0,000386	0,000497	0,000456	0,000411	0,00041	0,000405	0,00042				
5	0,000254	0,000213	0,000232	0,000204	0,000191	0,000173	0,000154				
6	0,000373	0,00032	0,000323	0,000262	0,000247	0,000232	0,000223				
7	0,000682	0,000498	0,000479	0,000407	0,000454	0,000436	0,000429				
8	0,000819	0,000872	0,000875	0,000553	0,00046	0,000672	0,000687				
9	0,000168	0,000169	0,000198	0,001216	0,000225	0,00025	0,000315				
10	0,000294	0,000307	0,000313	0,000391	0,000485	0,000393	0,000403				
11	0,000362	0,000347	0,00035	0,000571	0,000518	0,000621	0,000743				
12	0,000274	0,000289	0,000306	0,0004	0,000415	0,00051	0,000892				
	15	16	17	18	19	20					
1	0,000329	0,000303	0,000267	0,000238	0,000189	0,000146					
2	0,000713	0,000266	0,000261	0,00025	0,000204	0,000164					
3	0,000232	0,000189	0,000148	0,00012	8,62E-05	5,87E-05					
4	0,00033	0,000198	0,000201	0,000204	0,000203	0,000179					
5	0,000134	0,000123	0,000121	0,000113	8,68E-05	6,16E-05					
6	0,000218	0,000217	0,000218	0,000216	0,000206	0,000197					
7	0,000412	0,000396	0,000396	0,000411	0,000421	9,31E-05					
8	0,000693	0,000441	0,00023	0,000193	0,000132	9,52E-05					
9	0,000326	0,000327	0,000333	0,000338	0,000278	0,000209					
10	0,000596	0,000464	0,000308	0,000285	0,000287	0,000267					
11	0,000736	0,000844	0,000918	0,001022	0,001135	0,000287					
12	0,000572	0,000608	0,000626	0,000669	0,000777	0,000844					

Tabela 6.32 - Fluxo Emergente j =3, nj =10, i = 1

Figura 6.50 - Erro de Cauchy para 30 Iterações.

6.3.2.2 RESULTADOS PARA A PROJEÇÃO AXIAL i = 2.

Figura 6.51 - Fluxo Emergente j =3, Faixa nj =10, i = 2.

					1=20/17410	1=2			
	1	2	3	4	5	6	7		
1	0,000103	0,000216	0,000263	0,000289	0,000309	0,000333	0,000362		
2	0,000134	0,000185	0,000206	0,000226	0,000285	0,000362	0,000389		
3	6,74E-05	0,000109	0,000157	0,000199	0,000242	0,000284	0,000329		
4	0,000264	0,000389	0,000465	0,000489	0,000985	0,001486	0,001448		
5	0,00019	0,000445	0,000537	0,000603	0,000662	0,000698	0,001168		
6	0,000602	0,000774	0,000938	0,001195	0,001292	0,001222	0,001533		
7	0,000349	0,000665	0,000943	0,000934	0,00094	0,00093	0,000896		
8	0,000159	0,000214	0,000251	0,0003	0,000348	0,000538	0,000663		
9	0,000269	0,000331	0,000379	0,000405	0,000418	0,000445	0,000508		
10	0,000153	0,000246	0,000367	0,000411	0,000408	0,000955	0,001414		
11	0,000306	0,001284	0,002365	0,002237	0,002144	0,002075	0,002037		
12	0,000912	0,000862	0,000805	0,000788	0,000787	0,000813	0,000851		
	8	9	10	11	12	13	14		
1	0.000388	0.000404	0.000523	0.000871	0.001314	0.002367	0.001268		
2	0.000423	0.00046	0.000725	0.001604	0.002055	0.00145	0.001435		
3	0.000419	0.0006	0.26289	0.001024	0.000774	0.000729	0.000658		
4	0.001994	0.002585	0.001841	0.001021	0.000999	0.000983	0.000985		
5	0.001468	0.001355	0.001146	0.000706	0.00069	0.000646	0.000566		
6	0.001392	0.001099	0.000859	0.00045	0.000426	0.000404	0.000381		
7	0.001925	0.001559	0.001361	0.000875	0.000745	0.00073	0.000715		
8	0.000673	0.00131	0.001729	0.001042	0.000685	0.000749	0.000753		
9	0.000541	0.00053	0.000682	0.000615	0.000617	0.000516	0.000456		
10	0.001466	0.001526	0.001533	0.003234	0.004469	0.002223	0.00105		
11	0.002014	0.002019	0.002023	0.004588	0.0042	0.004119	0.003197		
12	0.000883	0.000907	0.000949	0.001783	0.001905	0.002129	0.00275		
		.,							
	15	16	17	18	19	20			
1	0.001271	0.001170	0.001062	0.001047	0.000810	0.00057			
2	0.001271	0.00119	0.001322	0.001296	0.000019	0.00037			
2	0.000557	0.000456	0.000382	0.000318	0.000212	0.000136			
4	0.000788	0.000505	0.000499	0.000475	0.000212	0.000313			
4	0.000477	0.000427	0.000433	0.000378	0.000230	0.000133			
6	0.000354	0.000321	0.000412	0.000378	0.000239	0.000133			
7	0,000668	0,000608	0.00058	0.000574	0.000524	0.000124			
/ 8	0.00075	0,000008	0.00038	0.000374	0.0001/0	0.000124			
0	0,00075	0,000409	0,000240	0,000211	0,000149	0,000100			
10	0.001282	0,000417	0.000300	0.000354	0,000309	0,00023			
11	0,001202	0,000099	0,00027	0,00021	0,000102	0.000225			
10	0.002157	0.001266	0.002310	0,002365	0.002359	0,000225			
12	0,00130	0,001200	0,001204	0,001332	0,001475	0,001552			

Tabela 6.33 - Fluxo Emergente j =3, nj =10, i = 2

Figura 6.52 - Erro de Cauchy para 30 Iterações.

6.3.2.3 RESULTADOS PARA A PROJEÇÃO AXIAL i = 3.

Figura 6.53 - Fluxo Emergente j =3, Faixa nj =10, i = 3.

FLUXO EMERGENTE (2J=12 E 2M=20) PARA i=3							
1	2	3	4	5	6	/	
0,000346	0,000411	0,000446	0,000444	0,00045	0,00047	0,000485	
0,000219	0,000296	0,000335	0,000375	0,001106	0,001876	0,001683	
8,68E-05	0,000131	0,000182	0,000223	0,00027	0,000318	0,000372	
0,000182	0,000283	0,000327	0,000346	0,00093	0,001635	0,001275	
9,99E-05	0,000151	0,000191	0,000228	0,000263	0,000279	0,000361	
0,000518	0,000567	0,000571	0,000601	0,000628	0,000641	0,001121	
0,00012	0,00036	0,000619	0,000606	0,000609	0,000616	0,000617	
0,000146	0,000224	0,000295	0,000415	0,000531	0,000979	0,001233	
0,000248	0,000338	0,000379	0,000401	0,000426	0,000451	0,000467	
0,00015	0,000303	0,000367	0,000367	0,000371	0,001052	0,001386	
0,001065	0,002301	0,003577	0,003107	0,00269	0,002344	0,002064	
0,003042	0,002571	0,002173	0,001902	0,0017	0,001556	0,001456	
8	9	10	11	12	13	14	
0,000466	0,000462	0,000636	0,000668	0,000622	0,000571	0,00033	
0,001544	0,001916	0,002827	0,003398	0,002156	0,001331	0,001344	
0,000551	0,000721	0,27742	0,001039	0,000806	0,000822	0,000826	
0,001779	0,003113	0,002614	0,001374	0,001153	0,001057	0,001048	
0,000435	0,000488	0,000461	0,000326	0,000327	0,000337	0,00033	
0,001288	0,001589	0,002042	0,001144	0,001203	0,001137	0,00098	
0,001387	0,001441	0,001766	0,001518	0,001435	0,001537	0,00157	
0,001196	0,001777	0,00251	0,001996	0,001374	0,001215	0,001287	
0,000474	0,000476	0,000729	0,004517	0,000942	0,000837	0,000677	
0,001229	0,001113	0,001021	0,001493	0,001414	0,00085	0,000611	
0,001856	0,001731	0,001621	0,002787	0,001887	0,001357	0,000918	
0,001375	0,001301	0,001229	0,002223	0,001485	0,001131	0,000962	
15	16	17	18	19	20		
0,000315	0,000288	0,00025	0,00021	0,000158	0,000116		
0,001021	0,000519	0,000457	0,000379	0,000288	0,000219		
0,000781	0,000662	0,000523	0,000442	0,000319	0,000171		
0,000787	0,000451	0,00046	0,000465	0,00043	0,000351		
0,000304	0,000289	0,000286	0,000261	0,00021	0,00018		
0,000896	0,000918	0,000962	0,001007	0,0009	0,000753		
0,001463	0,001154	0,000991	0,001003	0,000959	0,000317		
0,001417	0,000948	0,000481	0,000416	0,000299	0,000205		
0,000649	0,000639	0,000611	0,000572	0,000502	0,000374		
0,000575	0,000403	0,000239	0,000187	0,000138	8,60E-05		
0,000681	0,000715	0,000671	0,000627	0,000563	0,000117		
0.000407	0.000440	0.00000	0.000004	0.000246	0.000001		
	1 0,000346 0,000219 8,68E-05 0,000182 9,99E-05 0,000182 0,00018 0,00016 0,00016 0,00016 0,000165 0,00015 0,000304 8 0,00045 0,0001544 0,00057 0,000455 0,0001387 0,00179 0,000435 0,001387 0,001196 0,000135 15 0,000137 15 0,000304 0,00085 0,00137 15 0,000781 0,000649 0,00064 0,0006 0,000 0,00 0,000 0,000 0,000 0,000 0,00 0,000 0,000 0,000 0,000 0,000	I 2 0.000346 0.000191 0.000219 0.000296 8.68E-05 0.000131 0.000182 0.000286 9.99E-05 0.000131 0.000182 0.000286 0.000182 0.000286 0.000184 0.000286 0.000145 0.000281 0.000146 0.000281 0.00015 0.000281 0.00016 0.002201 0.0015 0.002301 0.00165 0.002301 0.001640 0.002281 0.001541 0.000351 0.000351 0.000721 0.000351 0.000476 0.001779 0.001131 0.001850 0.001731 0.001751 0.001731 0.001351 0.000476 0.000351 0.000486 0.000175 0.000471 0.0003751 0.000481 0.0003751 0.000481 0.0003751 0.000481 0.0004351 0.000483	1 2 3 0.00346 0.00046 0.00046 0.000249 0.000296 0.00035 8.68E-05 0.000131 0.00035 9.00038 0.000325 0.00035 9.000142 0.000283 0.00035 0.000151 0.000131 0.000182 0.00012 0.00036 0.00021 0.000142 0.000245 0.000357 0.00015 0.000360 0.000379 0.00015 0.000330 0.000377 0.00015 0.000357 0.000377 0.00015 0.000357 0.000377 0.000466 0.000422 0.000377 0.00051 0.000271 0.002173 0.000571 0.000271 0.002173 0.000179 0.000113 0.00242 0.001387 0.00141 0.001280 0.001375 0.00141 0.001221 0.001375 0.001210 0.001221 0.001375 0.001221 0.000282 0.001375	I Z 3 4 0.00046 0.000411 0.000446 0.000457 0.000457 0.000219 0.000286 0.000351 0.000427 0.000273 8.68E-05 0.000131 0.000182 0.000223 0.000355 0.000223 0.000182 0.000286 0.000371 0.000286 0.000273 0.000286 0.000182 0.000517 0.000361 0.000286 0.000281 0.000281 0.000146 0.000286 0.000619 0.000286 0.000451 0.000285 0.00012 0.000381 0.000379 0.000451 0.000285 0.000451 0.00014 0.000281 0.000371 0.000371 0.000371 0.000371 0.00145 0.002371 0.002171 0.002171 0.003577 0.003172 0.000341 0.000271 0.002142 0.001393 0.000351 0.001393 0.001454 0.001716 0.001771 0.002242 0.001374 0.001432 0.001480 0.000471 0.00242	I 2 3 4 5 0.000346 0.000411 0.000346 0.000411 0.000444 0.00045 0.000216 0.000296 0.000335 0.000275 0.00110 0.000248 0.000327 0.000236 0.000275 0.00116 0.000142 0.000248 0.000271 0.000228 0.000283 0.000151 0.000571 0.000281 0.000283 0.000273 0.000142 0.000267 0.000411 0.000283 0.000276 0.000411 0.000533 0.000142 0.000257 0.000415 0.000531 0.000411 0.000531 0.000143 0.000338 0.000377 0.000317 0.000531 0.000541 0.00154 0.000357 0.000317 0.000361 0.000526 0.000371 0.00154 0.000357 0.000317 0.001301 0.00216 0.000526 0.000551 0.000357 0.001374 0.001153 0.001374 0.001153 0.0001544 0.001777 0.002242	I 2 3 4 5 6 0.000346 0.000411 0.000446 0.000444 0.00045 0.00035 0.000219 0.000295 0.000375 0.001166 0.00187 0.000219 0.000296 0.000335 0.000237 0.000182 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000283 0.000181 0.000181 0.000283 0.000283 0.000181 0.000283 0.000283 0.000311 0.000283 0.000283 0.000141 0.000145 0.000141 0.000141 0.000141 0.001451 0.000141 0.001283 0.000280 0.000284 0.000141 0.001280 0.000286 0.000281 0.000128 0.000128 0.000128 0.000128 0.000128 0.000128 0.0001280 0.000128 0.000128 0.000128 0.000128 0.000128 0.000128 0.0001284 0.000128 0.00012	

Tabela 6.34 - Fluxo Emergente j =3, nj =10, i = 3

Figura 6.54 - Erro de Cauchy para 30 Iterações.

6.3.2.4 RESULTADOS PARA A PROJEÇÃO AXIAL i = 4.

Figura 6.55 - Fluxo Emergente j =3, Faixa nj =10, i = 4.

					1=20/17410	(1=+	
	· · · · ·	_	-		-	-	_
	1	2	3	4	5	6	1
1	0,000217	0,000379	0,000421	0,000419	0,000393	0,000373	0,00037
2	0,000332	0,000376	0,000377	0,000368	0,000389	0,000422	0,000397
3	0,000413	0,000396	0,000367	0,000377	0,000388	0,000372	0,000344
4	0,000476	0,000587	0,000523	0,000503	0,000718	0,000941	0,000564
5	0,000125	0,000359	0,000395	0,000429	0,000444	0,000417	0,000429
6	0,000258	0,000297	0,000297	0,000312	0,000324	0,00032	0,000364
7	0,00011	0,000327	0,000523	0,000494	0,000478	0,000459	0,000437
8	6,87E-05	9,54E-05	0,000112	0,000144	0,000175	0,000332	0,000425
9	0,000137	0,000161	0,000165	0,000168	0,000172	0,000174	0,000177
10	5,80E-05	8,90E-05	0,000106	0,000114	0,00012	0,000274	0,000414
11	0,000243	0,000675	0,001026	0,000986	0,000957	0,000925	0,000907
12	0,001087	0,000933	0,00082	0,000766	0,00073	0,000712	0,000722
	8	9	10	11	12	13	14
1	0,000363	0,000356	0,000343	0,00031	0,00028	0,000317	0,000247
2	0,000373	0,000282	0,000275	0,000369	0,000338	0,000292	0,00031
3	0,000251	0,000222	0,080697	0,000285	0,000286	0,000282	0,000278
4	0,000515	0,000712	0,00067	0,000613	0,000611	0,000613	0,000643
5	0,000446	0,000426	0,000483	0,000356	0,000361	0,00035	0,000333
6	0,000313	0,000323	0,000368	0,000327	0,000333	0,000324	0,000315
7	0,000655	0,000472	0,000467	0,000476	0,000586	0,000598	0,000626
8	0,000406	0,000436	0,000461	0,000324	0,000345	0,000476	0,000534
9	0,00018	0,000189	0,0002	0,000141	0,000237	0,000278	0,000388
10	0,000452	0.000494	0.000526	0.000646	0,000809	0,000514	0,000465
11	0,000903	0,00093	0,000949	0,001601	0,001133	0,001155	0,001055
12	0,000741	0,000757	0,000755	0,001072	0,000863	0,00083	0,001138
	15	16	17	18	19	20	
1	0,000253	0.000256	0,000245	0,000225	0,000174	0,000123	
2	0,000276	0,000217	0,000216	0,000209	0,000179	0,000151	
3	0,000257	0.000215	0,000165	0,000128	8,51E-05	5,64E-05	
4	0,000461	0.000169	0,00017	0.00017	0,000165	0,00014	
5	0,000311	0.000301	0,0003	0.000288	0,000204	0.000126	
6	0,00031	0.000317	0,000328	0.000329	0,00029	0,000254	
7	0.000588	0.000559	0.00057	0.000595	0.000617	0.000337	
8	0,000602	0.000606	0,000622	0.000618	0,000478	0,000426	
9	0.000427	0.000456	0.000473	0.000499	0.000546	0.000524	
10	0.00069	0.000471	0.000278	0.000242	0.000219	0.000163	
11	0.001095	0.001246	0.001294	0.001367	0.001501	0.000183	
12	0.000752	0.000787	0.000817	0.000878	0.00104	0.001205	
	-,	-,0,0,0,	-,0017	-,00/0	-,-0.0	-,	4

Tabela 6.35 - Fluxo Emergente j =3, nj =10 , i =

Figura 6.56 - Erro de Cauchy para 30 Iterações.

6.4 SOLUÇÃO ANALÍTICA APROXIMADA PARA O PROBLEMA DE TRANSFERÊNCIA RADIATIVA

Dada a equação de transferência radiativa bidimensional (3.2)

$$\underline{\Omega} \cdot \nabla \phi(\underline{x}, \underline{\Omega}) + \sigma_t(\underline{x}) \phi(\underline{x}, \underline{\Omega}) = S(\underline{x}, \underline{\Omega}) \text{ em } \{ V \in \mathbb{R}^2, \underline{\Omega} \in S^2 \},$$
(6.1)

supondo um caso onde o coeficiente de absorção é muito maior que o coeficiente de espalhamento, de tal forma que possa ser desprezado esse termo, então, $S(\underline{x},\underline{\Omega}) = 0.$

Desta forma resta apenas uma equação diferencial de primeira ordem e homogênea.

$$\underline{\Omega} \cdot \nabla \phi(\underline{x}, \underline{\Omega}) + \sigma_t(\underline{x}) \phi(\underline{x}, \underline{\Omega}) = 0$$
(6.2)

A solução analítica aproximada dessa equação é:

$$\phi \approx \exp[\frac{\sigma_a A}{sen\eta}] \tag{6.3}$$

que é uma solução do tipo da obtida em (5.48).

A figura (6.57) representa o fluxo de radiação emergente em cada uma das 2J vistas do problema (2J = 12) na projeção i = 1. A radiação incidente é originada na fonte j = 1 e viaja pelo meio através da faixa $n_j = 10$ num sistema homogêneo, sem espalhamento e com fluxo de entrada $\phi_{in} = 1$. O comportamento é da forma exponecial e a validação desse sistema se dá pela comparação com o resultado da solução analítica (6.3).

Figura 6.57 - Fluxo Emergente j =1, Faixa nj =10, i = 1.

	FLUX	O EMER	RGENTE (2J	=12 E 2M=20) PARA i=1		
1	1	2	3	4	5	6	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	
7	0	0	0	0	0	0	
8	0	0	0	0	0	0	
9	0	0	0	0	0	0	
10	0	0	0	0	0	0	
11	0	0	0	0	0	0	
12	0	0	0	0	0	0	
	8	9	10	11	12	13	
1	0	0	0,26945	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	
7	0	0	0	0	0	0	
8	0	0	0	0	0	0	
9	0	0	0	0	0	0	
10	0	0	0	0	0	0	
11	0	0	0	0	0	0	
12	0	0	0	0	0	0	
	4.5	10	(-1		10		
	15	16	17	18	19	20	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	
7	0	0	0	0	0	0	
8	0	0	0	0	0	0	
9	0	0	0	0	0	0	
10	0	0	0	U	0	0	
11	0	0	0	0	0	0	

Tabela 6.36 - Fluxo Emergente j =1, nj =10 , i =

CAPÍTULO 7

CONCLUSÃO E SUGESTÕES DE TRABALHOS FUTUROS

Neste trabalho a equação de transferência radiativa bidimensional, estacionária, monoenergética e com aproximação axial é aproximada angularmente por um método de ordenadas discretas que leva-se em conta a combinação de dois tipos de quadraturas escolhidas, criteriosamente, com o objetivo de minimizar os erros resultantes das discretizações espacial e angular.

Usa-se uma quadratura no plano, a base natural, que é a quadratura de Gauss-Lobato, ela não apresenta efeito raio quando a direção do raio coincide com uma das direções de discretização, e como no plano as direções estão igualmente distribuídas, este efeito é minimizado sempre. Entretanto, na outra direção de propagação, para fora do plano, integra-se com uma quadratura do tipo de Gauss-Legendre, e deste modo, quando o raio estiver fora do plano, o problema ocorre. Se fosse adotada uma base natural tridimensional esse problema seria resolvido completamente, mas isto ainda não é possível e ficará como uma sugestão para trabalhos futuros.

O domínio desse sistema de equações diferenciais parciais de 1ª ordem com condições de contorno no fluxo incidente é discretizado por uma malha de pixels, com a utilização dos conceitos da base natural.

A solução numérica do problema direto proposto se dá através de um processo iterativo denominado como método de aproximações sucessivas.

O teste de convergência da solução desse modelo iterativo, teste de Cauchy, mostra que a solução iterativa converge para os casos onde o coeficiente de espalhamento assume valores menores ou iguais ao da seção de choque de absorção, caso contrário a solução diverge. Sendo assim, a utilização desse método iterativo proposto pode ser considerada adequada para uma futura utilização dos seus resultados no contexto de reconstrução de parâmetros pela metodologia fonte-detetor desde que considere-se apenas problemas de pequenas perturbações provocadas pelo espalhamento do meio.

Dando sequência as atividades de pesquisa desenvolvidas nesta tese, propõe-se a realização dos seguintes trabalhos futuros:

1- Desenvolver uma base natural tridimensional.

2- Investigar com mais detalhe a anisotropia do sistema.

3- Comparar os resultados obtidos nesse trabalho utilizando-se a partição do domínio pela base natural com outros tipos de malhas, por exemplo, malhas triangulares.

4- Comparar os resultados obtidos pelo método de aproximações sucessivas com, por exemplo, o método de Galerkin descontínuo.

5- Estudar o problema inverso.

REFERÊNCIAS BIBLIOGRÁFICAS

- ABU-SHUMAYS, I. K., 1977, "Compatible Product Angular Quadrature for Neutron Transport in x-y Geometry", *Nuclear Science and Engineering*, Vol. 64, pp. 299-316.
- ANLI, F. e YASA, F., 2004, "P₁ Approximation of Neutron Transport Equation in Spherical Geometry", *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 87, pp. 213-219.
- BARICHELLO, L. B. e SIEWERT, C. E., 1998, "On the Equivalence Between the Discrete Ordinates and Spherical Harmonics Methods in Radiative Transfer", *Nuclear Science and Engineering*, Vol. 130, pp. 79-84.
- BARROS, R. C., 1997, "On the Equivalence of Discontinuous Finite Element Methods and Discrete Ordinates Methods for the Angular Discretizations of the Linearized Boltzmann Equation in Slab Geometry", *Annals of Nuclear Energy*, Vol.24, n. 13, pp. 1013-1026.
- BRIGGS, L. L., MILLER, W. F. Jr. e LEWIS, E. E., 1975, "Ray-Effect Mitigation in Discrete Ordinate-Like Angular Finite Element Approximations in Neutron Transport", *Nuclear Science and Engeneering*, Vol. 57, pp. 205-217.
- BOYCE, W. E. e DIPRIMA, R. C., 2002, *Equações Diferenciais Elementares e Problemas de Valores de Contorno.* 7 ed. Rio de Janeiro, LTC Editora.
- CARITA MONTERO, R. F., 2004, Estimativa dos Coeficientes de Absorção e Espalhamento em Meios Participantes Bidimensionais com um Método de

Ordenadas Discretas e Elementos Finitos Descontínuos Consitente com o Sistema Fonte-Detetor. Tese de D.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.

- CARITA MONTERO, R. F., ROBERTY, N.C. e SILVA NETO, A. J., 2001, "Reconstruction of a Combination of the Absortion and Scattering Coefficients with a Discrete Ordinates Method Consistent with the Source-Detector System", *Inverse Problems in Science and Engineering*, Vol. 12, n. 1, pp.81-101.
- CARLSON, B. G., 1953, "Solution of transport Equation by S_n Approximations", *Los* Alamos Scientific Laboratory Report, LA-1599.
- CHAI, J. C., LEE, H. S. e PATANKAR, S. V., 1993, "Ray Effect and False Scattering in the Discrete Ordinates Method", *Numerical Heat Transfer*, Parte B, Vol. 24, pp. 373-389.

CHANDRASEKHAR, S., 1960, Radiative Transfer. Dover Publications, Inc..

DAUTRAY, R., LIONS, J. L., 1988, Analyse Mathematique et Calcul Numerique pour les Sciences et les Techniques - Semi-Groupe Variationnel. Masson.

DAVISON, B., 1957, Neutron Transport Theory. Oxford.

- DUDERSTADT, J. J. e MARTIN, W. R., 1979, *Transport Theory*. John Wiley & Sons, Inc..
- FAN, W. C., DRUMM, C. R. e POWELL, J. L., 2002, Discrete Ordinates Approximations to the Fisrt-and-Second-Order Radiation Transport Equations, DE2002-800996, SAND2002-1880.

- FIVELAND, W. A., 1988, "Three Dimensional Radiative Heat Transfer Solution by the Discrete Ordinates Method", *J. Thermophys. Heat Transfer*, Vol. 2, pp. 309-316.
- FIVELAND, W. A., 1987, "Discrete-Ordinates Methods for Radiative Heat Transfer in Isotropically and Anisotropically Scattering Media", J. Heat Transfer, Vol. 109, pp. 809-812.
- HUNT, G. E., 1968, "The Transport Equation of Radiative Transfer with Axial Symmetry", *Journal of Applied Mathematics*, Vol. 16, n. 1, pp. 228-237.
- JAMALUDDIN, A. S. e SMITH, P. J., 1988, "Predicting Radiative Transfer in Axisymmetryc Cylindrical Enclosures Using Discrete Ordinates Method", *Combust. Sci. Technol.*, Vol. 62, pp. 173-186.
- KOBAYASHI, K., 1985, "Solution of Multi-Dimensional Neutron Transport Equation of the Spherical Harmonics Method Using the Finite Fourier Transformation and Quadrature Formula", *Transport Theory and Statistical Physics*, Vol. 14, n. 1, pp. 63-81.
- KORCÁKOVÁ, D. e KUBÁT, J., 2003, "Solution of the Radiative Transfer Equation in Axial Symmetry", *Proc. Numerical Methods for Multidimensional Radiative Transfer Problems.*
- KUZNETZOV, E. S., 1940, "On the Establishment of the Equilibrium of Radiant Energy in an Absorbing and Scattering Atmosphere". *Isv. AN SSSR, Ser. Geog. and Geophys.*

- KUZNETZOV, E. S., 1945, "Application of the Formula of the Theory of Vertical Visibility to the Calculation of Sky Brightness and Range of Visibility for some Simple Forms of the Scattering Function". *Isv. AN SSSR, Ser. Geog. and Geophys*, n. 9, pp. 204-209.
- KUZNETZOV, E. S. e OVCHINSKII, B. V., 1949, "The Results of a Numerical Solution of an Integral Equation in the Theory of Scattering of Light by the Atmosphere". *Trans. Geophys. in-ta AN SSSR, Ser.*, n. 4.
- KUZNETZOV, E. S., 1951a, "Radiative Equilibrium oa a Gaseous Sphere Surrounding an Absolutely Black Sphere". Isv. AN SSSR, Ser. Geophys, pp. 69-93.
- KUZNETZOV, E. S., 1951b, "A General Method for the Construction of Approximate Equations of Transfer of Radiant Energy". *Isv. AN SSSR, Ser. Geophys.*
- LATHROP, K. D., 1971, "Remedies for Ray Effects", Nuclear Science and Engeneering, Vol. 45, pp. 255-268.
- LATHROP, K. D., 1968, "Ray Effects in Discrete Ordinates Equations", *Nuclear Science and Engeneering*, Vol. 32, pp. 357-369.
- LATHROP, K. D. e CARLSON, B. G., 1966, "Use Discrete Ordinates Methods for Solution of Photons Transport Problems", *Nuclear Science and Engeneering*, Vol. 24, pp. 381-388.
- LIU, I-SHIH, 2006a, "A Method of Differential Iteration and Boundary Value

Problems in Extended Thermodynamics - Part 1: General Structure of Iterative Procedure", *Continuum Mechanics and Thermodynamics*, Aguardando publicação.

- LIU, I-SHIH, 2006b, "A Method of Differential Iteration and Boundary Value Problems in Extended Thermodynamics - Part 2: Convergence and Uniqueness of Numerical Solutions", *Continuum Mechanics and Thermodynamics*, Aguardando publicação.
- LEWIS, E. E. e MILLER, W. F. Jr., 1984, Computational Methods of Neutron Transport. Jonh Wiley & Sons, Inc..
- MOKHATAR-KARROUBI, M., 1997, Matematical Topics in Neutron Transport Theory: New Aspects. World Scientific Publishing.
- NUNES, R. C. e ROBERTY, N. C., 2002, "Sensibilidade do Problema de Transporte de Radiação em Meio Participante com Simetria Axial", *Proc. International Nuclear Atlantic Conference, INAC 2002-XIII ENFIR, Rio de Janeiro, Brasil.*
- NUNES, R. C. e ROBERTY, N. C., 2002, "Um Modelo Axissimétrico para a Equação de Transferência Radiativa Bidimensional", *Proc. International Nuclear Atlantic Conference, INAC 2005-XIV ENFIR, São Paulo, Brasil.*
- MARCHUK, G. I., 1958, Numerical Methods Applied to Nuclear Reactors. Atomizdat.
- MILLER, W. F. Jr., LEWIS, E. E. e ROSSOW, E. C., 1973, "The Application of Phase_Space Finite Elements to the One-Dimensional Neutron Transport

Equation", Nuclear Science and Engeneering, Vol. 51, pp. 148-156.

- ÖZISIK, M., 1973, Radiative Transfer and Interactions with Conduction and Convection. Jonh Wiley & Sons, Inc..
- REIS, M. L., 1990, Base Natural e Entropia em Problemas de Reconstrução de Imagens. Tese de M.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
- REIS, M. L. e ROBERTY, N. C., 1992, "Maximum Entropy Algorithms for Image Reconstruction from Projections", *Inverse Problems*, Vol. 8, pp. 623-644.
- REIS, M. L., ROBERTY, N. C. e CRISPIN, V. R., 1989, "Programa para Determinação de Contorno de Objetos a Partir de suas Projeções e Programa para Simulação de Dados de Projeção", *II Simpósio Brasileiro de Computação Gráfica*, pp. 460-468.
- ROBERTY, N.C., 2005, "A Natural Basis for Numerical Solution of the Linear Boltzmann Particles Transport Equation", Proc. XXVI Iberian Latin_American Congress on Computational Methods in Engineereing, CILAMCE 2005, Espirito Santo, Brasil.
- RODRIGUES, P. e BARICHELLO, L. B., 2004, "An Integral Equation to Radiative Transfer in Cylindrical Media", *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 83, pp. 765-776.
- SELÇUK, N. e KAYAKOL, N., 1996, "Evaluation of Angular Quadrature and Spatial Differencing Schemes for Discrete Ordinates Method in Rectangular Furnaces", Proc. National Heat Transfer Conference, Vol. 325.

- SONG, M. e VISKANTA, R., 1996, "Discrete Ordinates Solution of Axisymmetric Radiative Transfer within a Condensed Semitransparent Medium Having Specularly Reflecting Boundaries", *Proc. National Heat Transfer Conference*.
- TRUELOVE, J. S., 1987, "Discrete Ordinate Solutions of the Radiation Transport Equation", *J. Heat Transfer*, Vol. 109, pp. 1048-1051.
- TSAI, J. R. e ÖZISIK, M. N., 1990, "Radiation in Cylindrical Symmetry with Anisotropic Scattering and Variable Properties", *Int. J. Heat Transfer*, Vol. 31, pp. 2651-2658.
- USACHEV, L. N., 1955, "Equation for the Neutron Importance in the Perturbation Theory of Reactor Kinetics", *Reactor Engineering and Reactor Theory*, pp. 257-268.
- VIEIRA, D. R., 2005, Método Iterativo com Peso para Soluções de Equações Diferenciais Lineares. Tese de M.Sc., IM/UFRJ, Rio de Janeiro, RJ, Brasil.
- VLADIMIROV, V. S., 1963, Mathematical Problems in the One-Velocity Theory of Particle Transport. Canadá, Atomic Energy of Canada Limited.